欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1946-1955.doi: 10.3724/SP.J.1006.2014.01946

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶片早衰突变体osled的生理特征与基因定位

赵晨晨1,黄福灯2,龚盼1,杨茜1,程方民1,潘刚1,*   

  1. 1浙江大学农业与生物技术学院, 浙江杭州310058; 2 浙江省农业科学院, 浙江杭州310021
  • 收稿日期:2014-03-21 修回日期:2014-09-16 出版日期:2014-11-12 网络出版日期:2014-09-26
  • 通讯作者: 潘刚, E-mail: pangang12@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(30700498和31271691)资助

Physiological Characteristics and Gene Mapping of a Leaf Early-Senescence Mutant osled in Rice

ZHAO Chen-Chen1,HUANG Fu-Deng2,GONG Pan1,YANG Xi1,CHENG Fang-Min1,PAN Gang1,*   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
  • Received:2014-03-21 Revised:2014-09-16 Published:2014-11-12 Published online:2014-09-26
  • Contact: 潘刚, E-mail: pangang12@126.com

摘要:

叶片早衰直接影响作物的产量与品质, 因此, 研究叶片早衰的分子与生理机制对于作物遗传改良具有重要的意义。本研究利用60Co辐射诱变水稻品种93-11获得突变体osled, 其从分蘖期叶片就开始早衰, 最先表现为叶尖和叶边缘变褐, 并伴有红褐色斑点。在苗期经模拟干旱胁迫处理后, 突变体不仅早衰, 而且植株变矮以及根系变短。生理分析表明, 野生型剑叶、倒二叶和倒三叶的丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及过氧化物酶(POD)活性基本不变, 但突变体则显著升高且倒二叶和倒三叶极显著高于野生型; 突变体和野生型三片叶的可溶性蛋白含量、过氧化氢酶(CAT)活性及叶绿素总含量均依次下降, 但突变体倒二叶和倒三叶的含量或活性均显著低于野生型。叶片经台盼蓝、二氨基联苯胺(DAB)及四唑硝基蓝(NBT)等细胞组织化学染色及透射电镜分析表明, osled叶片细胞膜系统已破坏, H2O2和O2?积累, 叶绿体已开始解体。遗传分析表明, osled受一隐性基因控制, 借助图位克隆技术将该基因定位于第3染色体长臂的RM15528与RM15553两个标记之间, 遗传距离均为0.7 cM, 该结果为进一步克隆OsLED基因并研究其功能奠定了基础。

关键词: 水稻叶片早衰, 模拟干旱胁迫, 生理分析, 基因定位

Abstract:

Leaf early senescence directly affects crop yield and quality, therefore, studying the molecular and physiological mechanism of leaf early senescence means a lot to crop genetic improvement. This work used 60Co γ-radiation to radiate rice Varity 93-11 and a leaf early senescence mutant osled was obtained. The mutant senesced quite early even at tillering stage, showing grey at the tip and edge of leaves and red-brown lesion. Under the treatment of simulative drought stress, the mutant senesced at early seedlings and its plant height and root length were obviously shortened. Analysis in physiology and biochemistry showed the content of malondialdehyde (MDA), activities of superoxide dismutase (SOD) and peroxidase (POD) were basically unchanged from flag leaf to third-top leaf in wild type, while significantly increased, and dramatically higher in the second-top and third-top leaves of mutant. Contents of soluble protein and chlorophyll, and catalase (CAT) activity all gradually reduced in top three leaves of both the mutant and wild type, however, contents in second-top and third-top leaves of the mutant were quite lower than these in wild type. Histochemical stainings of trypan blue, 3,3’-diaminobenzidine (DAB), and nitro blue tetrazolium (NBT) not only suggested the destructions of membrane system but also illustrated the accumulation of H2O2 and O2?  in the mutant. Besides, ultrastructure of mesophyll cells further explained the degradation of chloroplast in osled. Genetic analysis suggested the osled was controlled by a single recessive gene. Through using gene mapping technologies, the OsLED gene was successfully mapped into an interval from marker RM15528 to marker RM15553 at the long arm of chromosome 3.Genetic distances were both 0.7 cM. These results laid a foundation for later gene cloning and its functions study.

Key words: Rice, Leaf early senescence, Simulated drought stress, Physiological analysis, Gene mapping

[1]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136



[2]杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转的研究. 作物学报, 1997, 23: 82–88



Yang J C, Zhu Q S, Wang Z Q, Lang Y Z. Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin, 1997, 23: 82–88 (in Chinese with English abstract)



[3]梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14: 25–30



   Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. Jiangsu Agric Coll, 1993, 14: 25–30 (in Chinese with English abstract)



[4]Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol, 2008, 67: 37–55



[5]Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388



[6]Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol, 2013, 161: 1202–1216



[7]Hudson D, Guevara D R, Hand A J, Xu Z, Hao L, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol, 2013, 162: 132–144



[8]Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132



[9]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol, 2012, 160: 1795–1807



[10]Luan W, Shen A, Jin Z, Song S, Li Z, Sha A. Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Sci China Life Sci, 2013, 56: 1113–1123



[11]Singh S, Giri M K, Singh P K, Siddiqui A, Nandi A K. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci, 2013, 38: 583–592



[12]Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155-163



[13]Chen L J, Wuriyanghan H, Zhang Y Q, Duan K X, Chen H W, Li Q T, Lu X, He S J, Ma B, Zhang W K, Lin Q, Chen S Y, Zhang J S, An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol, 2013, 163: 1752–1765



[14]Lee R H, Lin M C, Chen S C. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281-295



[15]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209



[16]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664



[17]Rong H, Tang Y, Zhang H, Wu P, Chen Y, Li M, Wu G, Jiang H. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. Plant Physiol, 2013, 170: 1367–1373



[18]Lee R H, Hsu J H, Huang H J, Lo S F, Chen S C. Alkaline alpha-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytol, 2009, 184: 596–606



[19]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217



[20]Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120–131



[21]Kusaba M, Ito H, Morita R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375



[22]Morita R, SatoY, Masuda Y, Nishimura M, Kusaba M. Defect in NON YELLOW COLORING 3, an α/β hydrolase-fold family protein, causes a stay green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940–952



[23]Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll- protein complexes during leaf senescence. Plant J, 2013, 74: 652–662



[24]Tang Y, Li M, Chen Y, Wu P, Wu G, Jiang H. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. Plant Physiol, 2011, 168: 1952–1959



[25]孙波, 周勇, 林拥军. 一个水稻衰老上调表达基因的初步生物学功能分析. 作物学报, 2012, 38: 1988–1996



Sun B, Zhou Y, Lin Y J. Preliminary functional analysis of a rice leaf senescence up-regulated gene. Acta Agron Sin, 2012, 38: 1988–1996 (in Chinese with English abstract)



[26]Mohammad I A, Ruey-Hua L, Shu-Chen G C. A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant, 2004, 123: 1–8



[27]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274



[28]Zhou Q, Yu Q, Wang Z, Pan Y, Lv W, Zhu L, Chen R, He G. Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice. Plant Cell Environ, 2013, 36: 1476–1489



[29]Pitakrattananukool S, Kawakatsu T, Anuntalabhochai S, Takaiwa F. Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Biosci Biotechnol Biochem, 2012, 76: 1296–1302



[30]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 2012, 87: 169–179



[31]李燕群, 高家旭, 肖云华, 李秀兰, 蒲翔, 孙昌辉, 王平荣, 邓晓健. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014, 40: 644–649



Li Y Q, Gao J X, Xiao Y H, Li X L, Pu X, Sun C H, Wang P R, Deng X J. Genetic analysis and gene fine mapping of yellow-green leaf mutant ygl80 in rice. Acta Agron Sin, 2014, 40: 644–649 (in Chinese with English abstract)



[32]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Philippines: IRRI, 1976



[33]陈建勋, 王晓峰. 植物生理学实验指导. 广东: 华南理工大学出版社, 2002. pp 35-128



     Chen J X, Wang X F. Experiments Instructions of Plant Physiology. Guangdong: Huanan Technology university Publishers, 2002. pp 35–128 (in Chinese)



[34]Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876



[35]Kariola T, Brader G, Li J, Palva E T. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 2005, 17: 282–294



[36]Mahalingam R, Jambunathan N, Gunjan S K, Faustin E, Weng H, Ayoubi P. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ, 2006, 29: 1357–1371



[37]Shen Y , Jiang H, Jin J, Zhang Z, Xi B, He Y, Wang G, Wang C, Qian L, Li X, Yu Q, Liu H, Chen D, Gao J, Huang H, Shi T, Yang Z. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198–1205



[38]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSR) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607



[39]Shimoda Y, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J, 2012, 72: 501–511



[40]Hideg E, Kalai T, Kos P B, Asada K, Hideg K. Singlet oxygen in plants—its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol, 2006, 82: 1211–1218



[41]Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: Trends and opportunities. Biotechnol Adv, 2010, 28: 489–499



[42]Wang Y, Lin A, Loake G J, Chu C. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. J Integr Plant Biol, 2013, 55: 202–208



[43]汪媛. 水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究. 扬州大学硕士学位论文, 江苏扬州, 2010



Wang Y. The Research of Physiological Changes, Protein Degradation and Protease Activity in the Process of Leaf Senescence in Rice. MS Dissertation of Yangzhou University, Yanzhou, China, 2010 (in Chinese with English abstract)



[44]何秀英, 徐世平, 廖耀平, 毛兴学, 翁克难, 陈钊明, 陈粤汉, 肖万生. 水稻高压变异材料的SSR标记和叶片可溶性蛋白质含量分析. 中国水稻科学, 2003, 17: 373–375



He X Y, Xu S P, Liao Y P, Mao X X, Weng K N, Chen Z M, Chen Y H, Xiao W S. SSR analysis and soluble protein content in leaf of rice mutants induced by high pressure. Chin J Rice Sci, 2003, 17: 373–375 (in Chinese with English abstract)



[45]Wu X Y, Kuai B K, Jia J Z, Jing H C. Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol, 2012, 54: 936–952



[46]Li Y, Chen L, Mu J, Zuo J. LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol, 2013, 163: 1059–1070



[47]Smykowski A, Zimmermann P, Zentgraf U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol, 2010, 153: 1321–1331

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!