作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2192-2197.doi: 10.3724/SP.J.1006.2014.02192
白云凤1,3,*,聂江婷2,张忠梁1,李平1,张维锋1,闫建俊1,冯瑞云1,张耀1
BAI Yun-Feng1,3,NIE Jiang-Ting2,ZHANG Zhong-Liang1,LI Ping1,ZHANG Wei-Feng1,YAN Jian-Jun1,FENG Rui-Yun1,ZHANG Yao1
摘要:
NAD(P)-苹果酸酶催化苹果酸氧化脱羧,产生丙酮酸和CO2,伴随NAD(P)的还原。在C4植物中,苹果酸酶参与了C4光合作用。本研究对克隆的双子叶C4植物籽粒苋NAD-苹果酸酶基因(AhNAD-ME)编码的氨基酸序列进行了生物信息学分析,结果表明, AhNAD-ME具有苹果酸酶的完整功能域,包括苹果酸N端结构域和苹果酸酶的NAD结合结构域;进化树表明, 该序列属于NAD-ME的α亚基,该亚基定位于线粒体基质中。半定量RT-PCR分析表明,该基因主要在叶片和茎中表达,表达量随光照时间延长而增加。将AhNAD-ME基因重组到原核表达载体pEASY-E1中,电击法转化到大肠杆菌Transette (DE3)菌株中,IPTG诱导其高效表达,表达的融合蛋白的分子量与预期相符,主要以包涵体形式存在。
[1]Shearer H L, Turpin D H, Delinis D T. Characterization of NADP-dependent malic enzyme from developing castor oil seed endosperm. Arch Biochem Biophy, 2004, 429: 134–144[2]Drincovich M F, Casati P, Andreo C S. NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett, 2001, 490: 1–6[3]Davies D D. The fine control of cytosolic pH. Physiol Plant, 1986, 67: 702–706[4]董庆龙, 王海荣, 安淼, 余贤美, 王长君. 苹果NADP依赖的苹果酸酶基因克隆、序列和表达分析. 中国农业科学, 2013, 46: 1857–1866Dong Q L, Wang H R, An M, Yu X M, Wang C J. Cloning, sequence and expression analysis of NADP-malic enzyme genes in apple. Sci Agric Sin, 2013, 46: 1857–1866 (in Chinese with English abstract)[5]Casati P, Drincovich M F, Edwards G E, Andreo C S. Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res, 1999, 61: 99–105[6]Fu Z Y, Zhang Z B, Hu X J, Shao H B, Ping X. Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. Comptes Rendus Biol, 2009, 332: 591–602[7]Berry J O, Yerramsetty P, Zielinski A M, Mure C M. Photosynthetic gene expression in higher plants. Photosynth Res, 2013, 117: 91–120[8]Moreney J V, Jungnick N, Dimario R J, Longstreth D J. Photorespiration and carbon concentrating mechanisms: two adaptation to high O2, low CO2 conditions. Photosynth Res, 2013, 117: 121–131[9]Langdale J A. C4 Cycles: Past, present, and future research on C4 photosynthesis. Plant Cell, 2011, 23: 3879–3892[10]Tausta S, Coye H, Rothermel B, Stiefel V, Nelson T. Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Mol Biol, 2002, 50: 635–652[11]Detarsio E, Maurino V G, Alvarez C E, Mueller G L. Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots. Plant Mol Biol, 2008, 68: 355–367[12]Maurino V, Drincovich M, Casati P, Andreo C, Edwards G, Ku M, Gupta S, Franceschi V. NADP-malic enzyme: immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. J Exp Bot, 1997, 48: 799–811[13]Chi W, Yang J H, Wu N H, Zhang F. Four rice genes encoding NADP-malic enzyme exhibit distinct expression profiles. Bios Biotechnol Biochem, 2004, 68: 1865–1874[14]Detarsio E, Andreo C S, Drincocich M F. Basic residues play key roles in catalysis and NADP+-specificity in maize (Zea mays L.) photosynthetic NADP+-dependent malic enzyme. Biochem J, 2004, 382: 1025–1030[15]张锡州, 李廷轩, 王昌金. 富钾植物籽粒览研究进展. 中国农学通报, 2005, 21(4): 230–235Zhang X Z, Li T X, Wang C J. Progress of research on K-rich plant of grain amaranth. Chin Agric Sci Bull, 2005, 21(4): 230–235 (in Chinese with English abstract)[16]李廷轩, 马国瑞. 籽粒苋富钾基因型的根系形态和生理特性. 作物学报, 2004, 30: 1145–1151Li T X, Ma G R. Physiological and morphological characteristics of roots in grain amaranth genotypes enrichment in potassium. Acta Agron Sin, 2004, 30: 1145–1151 (in Chinese with English abstract)[17]Johnson B L, Henderson T L. Water use patterns of grain amaranth in the northern great plains. Agron J, 2002, 94: 1437–1443[18]Shukla S, Bhargava A, Chatterjee A, Srivastava A, Singh S P. Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica, 2006, 151: 103–110[19]李平, 白云凤, 张维锋. 籽粒苋苹果酸酶基因克隆及分析. 西北植物学报, 2010, 30: 229–236Li P, Bai Y F, Zhang W F. Cloning and analysis of NAD-ME gene of Amaranthus hypochondriacus. Acta Bot Boreali-Occident Sin, 2010, 30: 229–236 (in Chinese with English abstract)[20]李平, 白云凤, 冯瑞云, 王原媛, 张维锋. 籽粒苋苹果酸酶(NAD-ME)基因密码子偏好性分析. 应用与环境生物学报, 2011, 17: 12–17Li P, Bai Y F, Feng R Y, Wang Y Y, Zhang W F. Analysis of codon bias of NAD-ME gene in Amarnathus hypochondriacus. Chin J Appl Environ Biol, 2011, 17: 12–17 (in Chinese with English abstract)[21]Petersen T, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011, 8: 785–786[22]Truscott K N, Brandner K, Pfanner N. Mechanisms of Protein Import into Mitochondria. Curr Biol, 2003, 13: R326–R337[23]von Heijne G, Steppuhn J, Herrmann R G. Domain structure of mitochondrial and chloroplast targeting peptides. EurJ Biochem, 1989, 180: 535–545 [24]Christopher J, Tonkin C J, Foth B J, Ralph S A, Struck N, Cowman A F, McFadden G I. Evolution of malaria parasite plastid targeting sequences. Proc Natl Acad Sci USA, 2008, 105: 4781–4785[25]Long J J, Wang J L, Berry J O. Cloning and analysis of the C4 photosynthetic NAD-dependeng malic enzyme of Amaranth Mitochondria. J Biol Chem, 1994, 269: 2827–2833[26]Murata T, Ohsugi R, Matsuoka M, Nakamoto H. Purification and characterization of NAD malic enzyme from Leaves of Eleusine coracana and Panicum dichotomiflorum. Plant Physiol, 1989, 89: 316–324[27]Oshugi R, Murata T. Leaf anatomy, post-illumination CO2 burst and NAD-malic enzyme activity in Panicum dichotomiflorum. Plant Cell Physiol, 1980, 21: 1329–1333[28]Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol, 2006, 17: 353–358[29]Waugh D S. Making the most of affinity tags. Trends Biotechnol, 2005, 23: 316–320 |
[1] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[2] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[3] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[4] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[5] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[6] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[7] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[8] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[9] | 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400. |
[10] | 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656. |
[11] | 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169. |
[12] | 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521. |
[13] | 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574. |
[14] | 闫蕾,杨宗举,苏亮,肖阳,郭林,宋梅芳,孙蕾,孟凡华,白建荣,杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式[J]. 作物学报, 2016, 42(09): 1298-1308. |
[15] | 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258. |
|