欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2176-2182.doi: 10.3724/SP.J.1006.2014.02176

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦籽粒淀粉分支酶同工酶结构组成及时空表达

刘正帅1,刘贵芬1,杨明煜2,贾晓1,李运祥1,赵法茂1,*   

  1. 1泰山学院生物与酿酒工程学院, 山东泰安271021; 2泰安市第一中学, 山东泰安271000
  • 收稿日期:2014-04-17 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-09-26
  • 通讯作者: 赵法茂, E-mail: fmzhao8828@163.com
  • 基金资助:

    本研究由山东省自然科学基金(ZR2010CM034)和2013年全国大学生创新创业训练计划资助。

Constitution and Spatiotemporal Expression of Starch Branching Enzyme in Developing Wheat Grain

LIU Zheng-Shuai1,LIU Gui-Fen1,YANG Ming-Yu2,JIA Xiao1,LI Yun-Xiang1,ZHAO Fa-Mao1,*   

  1. 1 College of Biology and Enology, Taishan University, Tai’an 271021, China; 2 Tai’an No.1 Middle School, Tai’an 271000, China
  • Received:2014-04-17 Revised:2014-09-16 Published:2014-12-12 Published online:2014-09-26
  • Contact: 赵法茂, E-mail: fmzhao8828@163.com

摘要:

本研究的目的是阐明小麦支链淀粉合成的酶学机制。以8小麦品种的籽粒为材料, 采用非变性聚丙烯酰胺凝胶电泳(Native-PAGE)SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定SBE同工酶类型、时空表达谱及亚基组成, 分析SBE同工酶空间分布特点和器官表达特异性。共检测到4SBE同工酶, 其中BSBEIIa分布在胚乳和叶片中, ADi专一定位于胚乳中。在小麦籽粒灌浆过程中, DiSBEIIa首先表达, 而后是B, A最后表达;至灌浆末期, BSBEIIa停止表达。SBE同工酶都是单亚基酶, 均由一条86~92 kD的多肽链组成。SBE同工酶的空间分布具有器官特异性, 并在籽粒发育进程中顺序表达。DiBSBEIIa是占主导地位的SBE同工酶, 可能是决定SBE总酶活性的主效应酶, 在籽粒和叶片支链淀粉合成中起关键作用。

关键词: 小麦, 淀粉分支酶, 支链淀粉, 时空表达, 器官分布

Abstract:

This study aimed at disclosing the enzymatic mechanism in amylopectin synthesis in wheat (Triticum aestivum L.). The isozyme forms, organ localization, spatiotemporal expression profile and subunits constitution of starch branching enzyme (SBE) were identified in eight wheat cultivars from different provenances using native polyacrylamide gel electrophoresis (Native-PAGE) and SDS-PAGE. Four SBE isozymes were detected in wheat endosperm, in which isozymes B and SBEIIa were localized in endosperm and leaf, whereas isozymes A and Di were exclusively present in endosperm. In the process of grain filling, Di and SBEIIa expressed first, followed by isozyme B, and isozyme A expressed finally. However, B and SBEIIa terminated to express at late filling stage. All SBE isozymes were composed of one subunit of 86–92 kD, and their spatial localization exhibited organ specificity. According to the expression level, Di, B, and SBEIIa are considered as dominant isozymes for grain endosperm development. They probably determinate the total SBE activity and serve as key factors in amylpectin biosynthesis in wheat grain and leaf.

Key words: Triticum aestivum L., Starch branching enzyme, Amylpectin, Spatiotemporal expression, Organ localization

[1]Baga M, Glaze S, Mallard C S, Chibbar R. A starch branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Mol Biol, 1999, 40: 1019–1030



[2]姚大年, 李保云, 朱金宝, 梁荣奇, 刘广田. 小麦品种主要淀粉性状及面条品质预测指标的研究. 中国农业科学, 1999, 32(6): 84–88



Yao D N, Li B Y, Zhu J B, Liang R Q, Liu G T. Study on main starch properties and predictive indexes of noodle quality in common wheat. Sci Agric Sin, 1999, 32(6): 84–88 (in Chinese with English abstract)



[3]McCormick K M, Panozzo J F, Hong S H. A swelling power test for selecting potential noodle quality wheats. Aust J Agric Res, 1991, 42: 317–323.



[4]Myers A M, Morell M K, JamesM G, Ball S G. Recent progress toward understanding the amylopectin crystal. Plant Physiol, 2000, 122: 989–997



[5]Kossmann J, Lloyd J. Understanding and influencing starch biochemistry. Crit Rev Plant Sci, 2000, 19: 171–226



[6]James M G, Denyer K, Myers A M. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, 6: 215–222



[7]Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem, 2010, 48: 383–392



[8]Guan H P, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol, 1993, 102: 269–1273



[9]Takeda Y, Guan H-P, Preiss J. Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res, 1993, 240: 253–263



[10]Morell M K, Blennow A, Hashemi B K, Samuel M S. Differential expression and properties of starch branching nzyme isoforms in developing wheat endosperm. Plant Physiol, 1997, 113: 201–208



[11]Regina A, Kosar H B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp P J, Morell M K, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta, 2005, 222: 899–909



[12]Schwall G P, Safford R, Westcott R J, Jeffcoat R J, Tayal A, Shi Y C, Gidley M G, Jobling S A. Production of very-high-amylose potato starch by inhibition of SBE A and SBE B. Nation Biotechnol, 2000, 18: 551–554



[13]Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic effects of amylose–extender mutation in rice endosperm. Plant physiol, 2001, 127: 459–472



[14]Regina A, Bird D, Topping D, Bowden S, Freeman J, Barsby T, Hashemi B K, Li Z, Rahman S, Morell M. High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proc Natl Acad Sci USA, 2006, 103: 3546–3551.



[15]Yamanouchi H, Nakamura Y. Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol, 1992, 33: 985–991



[16]李太贵, 沈波, 陈能, 罗玉坤. Q酶对水稻籽粒垩白形成的影响. 作物学报, 1997, 23: 338–344



Li T G, Shen B, Cheng N, Luo Y K. Effect of Q-enzymeon the chalkiness formation of rice grain. Acta Agron Sin, 1997, 23: 338–344 (in Chinese with English abstract)



[17]Nagamine T, Yoshida H, Komae K. Varietal differences and chromosome locations of multiple isoforms of starch branching enzyme in wheat endosperm. Phytochemistry, 1997, 46: 23–26



[18]Davis B J. Disc electrophoresis II Method and application of human serum proteins. Ann NY Acad Sci, 1964, 121: 404–427



[19]Hager D A, Burgess R R. Elution of proteins from SDS-polyacrylamide gels, removal of SDS, and renaturation of enzymatic activity: Results with sigma subunit of E. coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem, 1980, 109: 76–86



[20]Dynan W S, Jendrisak JJ, Hager D A, Burgess R D. Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme). J Biol Chem, 1981, 256: 5860–5865



[21]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685



[22]Hzard B, Zhang X Q, Colasuonno P, Uauy C, Beckles D M, Dubcovsky J. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylase and resistant starch content in durum wheat. Crop Sci, 2012, 52: 1754–1766



[23]Carciofi M, Blennow A, Jensen S L, Shaik S S, Henriksen A, Buleon A, Holm P B, Hebelstrup K. Concerted suppression of all starch branching enzyme genes in barley produces amylase-only starch granules. BMC Plant Biol, 2012, 12: 223–239



[24]Rahman S, Hashemi B K, Samuel M S, Hill A, Abbott D C, Skerritt J H, Preiss J, Appels R, Morell M K. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 1995, 22: 793–803



[25]Tetlow I J, Wait R, Lu Z X, Akkasaeng R, Bowsher C G, Esposito S, Hashemi B K, Morell M K, Emes M J. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell, 2004, 16: 694–708



[26]Tetlow I J, Beisel K G, Cameron S, Makhmoudova, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878–1891



[27]Hennen-Bierwagen T A, Liu F, Marsh R S, Kim S, Gan Q, Tetlow I J, Emes M J, James M G, Myers A M. Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol, 2008, 146: 1892–1908

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!