欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2059-2069.doi: 10.3724/SP.J.1006.2014.02059

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

粗山羊草全基因组Aux/IAA基因家族的分离、染色体定位及序列分析

乔麟轶1,4,**,李欣1,**,畅志坚1,张晓军1,詹海仙1,郭慧娟1,李建波4,常建忠3,*,郑军2,*   

  1. 1山西省农业科学院作物科学研究所 / 农业部黄土高原作物基因资源与种质创制重点实验室, 山西太原030031; 2山西省农业科学院小麦研究所, 山西临汾 041000; 3山西省农业科学院旱地农业研究中心, 山西太原030006; 4山西大学研究生院, 山西太原 030006
  • 收稿日期:2014-05-23 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-10-20
  • 通讯作者: 常建忠, E-mail: cjzyfx@163.com; 郑军, E-mail: zjsaas@126.com
  • 基金资助:

    本研究由山西省国际科技合作计划项目(2013081007), 山西省青年科学基金项目(2011021031-3), 山西省农业科学院科技攻关项目(2013gg30), 山西省农业科学院博士研究基金(YBSJJ1407)项目和山西省农业科学院重点项目(YZD1401)资助。

Whole-Genome Sequence Isolation, Chromosome Location and Characterization of Primary Auxin-Responsive Aux/IAA Gene Family in Aegilops tauschii

QIAO Lin-Yi1,4,**,LI Xin1,**,CHANG Zhi-Jian1,ZHANG Xiao-Jun1,ZHAN Hai-Xian1,GUO Hui-Juan1,LI Jian-Bo4,CHANG Jian-Zhong3,*,ZHENG Jun2,*   

  1. 1Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; 2 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, China; 3 Research Center of Dryland Farming, Shanxi Academy of Agricultural Sciences, Taiyuan 030006, China; 4Graduate School of Shanxi University, Taiyuan 030006, China
  • Received:2014-05-23 Revised:2014-09-16 Published:2014-12-12 Published online:2014-10-20
  • Contact: 常建忠, E-mail: cjzyfx@163.com; 郑军, E-mail: zjsaas@126.com

摘要:

生长素是植物生长发育过程中的关键激素之一,Aux/IAA家族基因是重要的生长素原初响应基因。通过生物信息学方法从粗山羊草(Aegilops tauschii)全基因组中分离出28Aux/IAA基因,其中20个粗山羊草Aux/IAA蛋白具有4个保守结构域;28Aux/IAA基因分布于全部7对染色体上,5个基因分别具有位于同一位点的已知标记。粗山羊草IAA3IAA11IAA26的表达具有组织特异性,分别在雌蕊、种子和根中特异表达。系统发育显示,11对粗山羊草-乌拉尔图小麦Aux/IAA蛋白、5对粗山羊草-大麦Aux/IAA蛋白直系同源。共线性分析表明,粗山羊草Aux/IAA基因与短柄草、水稻中同源基因具有很好的共线性。本研究分离的相关基因不仅可用于小麦的遗传改良,也为深入研究小麦Aux/IAA基因提供了信息。

关键词: 粗山羊草, 生长素, Aux/IAA基因家族, 染色体定位, 生物信息学

Abstract:

Auxin, as one of the most important hormones, plays a key role in many processes of plant development. The Aux/IAA family contains important early auxin response genes. A genome-wide research of Aux/IAA genes in Aegilops tauschii was carried out using bioinformatic method. In this study, 28 Aux/IAA genes were identified in Ae. tauschii, which were distributed on seven chromosomes of Ae. tauschii genome. Twenty Aux/IAA genes share four conserved amino acid sequence motifs and five were mapped on the same locus with known markers. AetIAA3, AetIAA11, and AetIAA26 were specifically expressed in pistil, seed and root of Ae. tauschii, respectively. Eleven pairs of Ae. tauschiiTriticum urartu and five pairs of Ae. tauschiiHordeum vulgare Aux/IAA proteins were orthologous in the phylogenetic tree. Collinearity analysis indicated Aux/IAA genes showed a higher synteny between Ae. tauschii and two other species (Brachypodium distachyon and Oryza stativa). The Aux/IAA genes isolated can not only be applied in genetic improvement of common wheat but also provide basic information in further research of Aux/IAA genes in wheat.

Key words: Aegilops tauschii, Auxin, Aux/IAA gene family, Chromosome location, Bioinformatics

[1]Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016



[2]Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks R M, Govaerts W, Friml J. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol, 2010, 21: 447



[3]Ljung K. Auxin metabolism and homeostasis during plant development. Development, 2013, 140: 943–950



[4]Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996, 111: 9–17



[5]Rogg L E, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 2001, 13: 465–480



[6]Song Y, You J, Xiong L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinos-teroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70: 297–309



[7]Kazan K, Manners J M. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009, 14: 373–382



[8]Strader L C, Chen G L, Bartel B. Ethylene directs auxin to control root cell expansion. Plant J, 2010, 64: 874–884



[9]Karen J H, Jaime F M, Eve-Marie J. Integration of light and auxin signaling. Cold Spring Harb Perspect Biol, 2009, 1: 1–11



[10]Reed J W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci, 2001, 6: 420–425



[11]Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol, 2002, 49: 373–385



[12]Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533–543



[13]Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453–460



[14]Tiwari S B, Wang X J, Hagen G, Guilfoyle T J. Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell, 2001, 13: 2809–2822



[15]Kepinski S and Leyser O. Auxin-induced SCF-TIR1-Aux/IAA interaction involves stable modification of the SCF/TIR1 complex. Proc Natl Acad Sci USA, 2004, 101: 12381–12386



[16]Walker J C, Key J L. Isolation of cloned cDNAs to auxin-responsive polyA RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci USA, 1982, 79: 7185–7189



[17]Paul J O, Yoko O, José M A, April C, Chang C, Joseph R E, Beth H, Liu A, Courtney O, Hong Q, Alison S, Yu G X, Athanasios T. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell, 2005; 17: 3282–3300



[18]Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K, Khurana J P. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics, 2006, 6: 47–59



[19]Udaya C K, Stephen P D, Amy M B, Gerald A T. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol, 2007, DOI: 10.1186/1471-2229-7-59



[20]Wang Y, Deng D, Bian Y, Lü Y, Xie Q. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol Biol Rep, 2010, 37: 3991–4001



[21]Han X, Xu X, Fang D D, Zhang T, Guo W. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene, 2012, 503: 83–91



[22]Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics, 2012, 287: 295–311



[23]Gan D, Zhuang D, Ding F, Yu Z, Zhao Y. Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus). J Genet, 2013, 92: 513–521



[24]Bhumica S, Archana C, Jitendra P K, Paramjit K. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot, 2006, 57: 4059–4070



[25]Rachel B, Manuel S, Matthias P, Gary L A B, Rosalinda D A, Alexandra M A, Neil M, Melissa K, Arnaud K, Dan B, Suzanne K, Darren W, Martin T, Ian B, Gu Y, Huo N X, Luo M C, Sunish S, Bikram G, Sharyar K, Olin A, Paul K, Jan D, Richard M, Anthony H, Klaus F M, Keith J E, Michael W B, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710



[26]Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F X, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, IWGSC, Yang H M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[27]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90



[28]Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755–763



[29]Letunic I, Copley R R, Schmidt S, Ciccarelli F D, Doerks T, Schultz J, Ponting C P, Bork P. SMART 4.0: towards genomic data integration. Nucl Acids Res, 2004, 32: 142–144



[30]Finn R D, Tate J, Mistry J, Coggill P C, Sammut S J, Hotz H R, Ceric G, Forslund K, Eddy S R, Sonnhammer E L, Bateman A. The Pfam protein families database. Nucl Acids Res, 2008, 36: 281–288



[31]Luo M C, Deal K R, Akhunova E D, Akhunovaa A R, Anderson O D, Anderson J A, Blaked N, Clegge M T, Coleman-Derrb D, Conley E J, Crossman C C, Dubcovskya J, Gill B S, Gu Y Q, Hadam J, Heod H Y, Huo N X, Lazo G, Ma Y, Matthewsg D E, McGuirea P E, Morrell P L, Qualseta C O, Renfrob J, Tabanao D, Talbertd L E, Tiana C, Tolenoe D M, Warburtonh M L, You F M, Zhang W, Dvoraka J. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA, 2009, 106: 15780–15785



[32]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023–1026



Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29: 1023–1026 (in Chinese with English abstract)



[33]Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucl Acids Res, 2009, 37: 202–208



[34]Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan, P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947–2948



[35]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[36]Kepinski S and Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, 2005, 435:446–451



[37]Kim J, Harter K, Theologis A. Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA, 1997, 94: 11786–11791



[38]Colón-Carmona A, Chen D L, Yeh K C, Abel S. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol, 2000, 124: 1728–1738



[39]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2009, 463:763–768



[40]Martin-Sanchez J A, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes M J, González-Belinchón C, López-Braña I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet, 2003, 106: 1248–1255



[41]Ni J, Zhu Z X, Wang G H, Shen Y X, Zhang Y Y, Wu P. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions. PLoS One, 2014, 9: e85358



[42]Jun N, Gaohang W, Zhenxing Z, Huanhuan Z, Yunrong W, Ping W. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J, 2011, 68:433–442



[43]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870–883



[44]王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 闫长生, 游光霞, 肖世和. 不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报, 2008, 34: 1750–1756



Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agron Sin, 2008, 34: 1750–1756 (in Chinese with English abstract)



[45]Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol, 2012, 53: 659–672

[1] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[2] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[3] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[4] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[5] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[6] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[7] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[8] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[9] 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689.
[10] 周向阳,赵亮,狄佳春,陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位[J]. 作物学报, 2019, 45(9): 1440-1445.
[11] 姚珺玥,华营鹏,周婷,王涛,宋海星,官春云,张振华. 甘蓝型油菜AVP1、VHA-a2VHA-a3基因的鉴定及功能性研究[J]. 作物学报, 2019, 45(8): 1146-1157.
[12] 王玉奎,张贺翠,白晓璟,廉小平,施松梅,刘倩莹,左同鸿,朱利泉. 甘蓝BoPINs家族基因的特征和表达分析[J]. 作物学报, 2019, 45(8): 1270-1278.
[13] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[14] 梁桂红,华营鹏,周婷,廖琼,宋海星,张振华. 甘蓝型油菜NRT1.5NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380.
[15] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!