欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 109-122.doi: 10.3724/SP.J.1006.2015.00109

• 耕作栽培·生理生化 • 上一篇    下一篇

生物炭与化学肥料互作的大豆生物学效应

张伟明,管学超,黄玉威,孙大荃,孟军,陈温福*   

  • 收稿日期:2014-05-09 修回日期:2014-09-30 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 陈温福, E-mail: wfchen5512@126.com
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费(201303095),辽宁省教育厅科学研究一般项目(L2014267),辽宁省高校重大科技平台建设项目(生物炭工程技术研究中心)资助。

Biological Effects of Biochar and Fertilizer Interaction in Soybean Plant

ZHANG Wei-Ming,GUAN Xue-Chao,HUANG Yu-Wei,SUN Da-Quan,MENG Jun,CHEN-Wen-Fu*   

  1. College of Agronomy, Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, China
  • Received:2014-05-09 Revised:2014-09-30 Published:2015-01-12 Published online:2014-11-11
  • Contact: 陈温福, E-mail: wfchen5512@126.com

摘要:

以大豆品种铁丰40为试材,在2010—2011年的大田试验中调查生物炭与不同用量化肥配施对大豆生长发育、光合作用、产量与品质及肥料表观利用率等的影响。结果表明,炭/肥互作在不同程度上提高了大豆株高、叶片净光合速率与蒸腾速率,增加了叶、茎干物重。炭/肥互作对大豆生长前期的氮、磷吸收影响不明显,但随着生育期的推进,叶、茎对氮、磷吸收逐步增加,单株氮、磷积累量明显提高。炭/肥互作提高单株荚数、单株粒数、单株粒重和产量,平均比单施化肥增产13.2%。其中,在常规施肥量减少15%、30%和60%基础上增施生物炭,2年平均产量分别比常规施肥提高11.20%、11.00%和8.17%,平均增产10.1%。并且,炭/肥配施处理的蛋白质与脂肪总量明显优于单施化肥处理,表现为配施化肥量越少效应越明显。生物炭与化肥配施“减量增效”作用明显,可应用于大豆生产。

关键词: 生物炭, 大豆, 产量, 生物学效应

Abstract:

The effect of biochar, as a soil amendment, in combination with different concentrations of a chemical fertilizer on the agronomic traits and physiological characteristics was investigated using the soybean cultivation Tiefeng 40 during 2010 and 2011. The results revealed that the application of biochar mixed with fertilizer increased the plant height, net photosynthetic rate, and leaf transpiration rate, and also improved the leaf and stem dry matter accumulation. Although the effect of biochar mixed with fertilizer on N (nitrogen) and P (phosphorus) uptake in soybean was not obvious during the early growth stage, both leaf and stem N and P uptake gradually increased in the late stage, and the accumulation per plant for both N and P was also significantly improved. Moreover, biochar mixed with fertilizer increased the pod number, seed number, and seed size per plant, resulting in an average yield increase of 13.2%, compared with the treatment of applying chemical fertilize alone. As the fertilizer application was reduced by 15%, 30%, and 60%, the yield increased by 11.20%, 11.00%, and 8.17% respectively, with a yield increase of 10.6% on an average of two years. Meanwhile, the increase in total protein and fat contents was also dependent on the concentration of biochar mixed with fertilizer, the greater the biochar concentration, the greater the increase. Taken together, our results support the theory of “less fertilizer, but positive effects” for both yield and quality in Tiefeng 40. This approach can be applied in soybean production.

Key words: Biochar, Soybean, Yield, Biological effects

[1]闫湘, 金继运, 何萍, 梁鸣早. 提高肥料利用率技术研究进展. 中国农业科学, 2008, 41: 450–459

Yan X, Jin J Y, He P, Liang M Z. Recent advances in technology of increasing fertilizer use efficiency. Sci Agric Sin, 2008, 41: 450–459 (in Chinese with English abstract)

[2]全为民, 严力蛟. 农业面源污染对水体富营养化的影响及其防治措施. 生态学报, 2002, 22: 291–299

Quan W M, Yan L J. Effects of agricultural nonpoint source pollution on eutrophication of water body and its control measure. Acta Ecol Sin, 2002, 22: 291–299 (in Chinese with English abstract)

[3]Antal M J, Gronli M. The art, science and technology of charcoal production. Industr Engin Chem, 2003, 42: 1619–1640

[4]Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresourc Technol, 2004, 95: 255–257

[5]Steiner C, Teixeira W G, Lehmann J, Nehls T, Macêdo J L V, BlumW E H, Zech W. Long term effects of manure, charcoal, and mineral: fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil, 2007, 291: 275–290

[6]Novak J M, Busscher W J, Laird D L, Ahmedna M W, Don W, Niandou M A S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci, 2009, 174: 105–112

[7]Oguntunde P G, Abiodun B J, Ajayi A E. Effects of charcoal production on soil physical properties in ghana. J Plant Nutr Soil Sci, 2008, 171: 591–596

[8]Kleiner K. The bright prospect of biochar. Nature Reports-Climate Change, 2009, 3(6): 72–74

[9]Liu X Y, Zhang A F, Ji C Y, Joseph S, Bian R J, Li L Q, Pan G X, Paz-Ferreiro J. Biochar’s effect on crop productivity and the dependence on experimental conditions a meta-analysis of literature data. Plant Soil, 2013, 373: 583–594

[10]Partey S T, Preziosi R F, Robson G D. Short-term interactive effects of biochar, green manure, and inorganic fertilizer on soil properties and agronomic characteristics of maize. Agricultural Research, 2014, 3: 128–136

[11]Lehmann J. A handful of carbon. Nature, 2007, 447: 143–144

[12]鲍士旦. 土壤农化分析. 北京: 中国农业科技出版社, 2000. pp 39–264

Bao S D. The agricultural and chemical analysis of soil. Beijing: China Agriculture Press, 2000. pp 39–264 (in Chinese)

[13]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006

Qiu L J, Chang L Z. Descriptors and data standard for soybean. Beijing: China Agriculture Press, 2006 (in Chinese)

[14]Zhao X, Wang J W, Wang S Q, Xing G X. Successive straw biochar application as a strategy to sequester carbon and improve fertility: a pot experiment with two rice/wheat rotations in paddy soil. Plant Soil, 2014, 378: 279–294

[15]陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46: 3324–3333

Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013, 46: 3324–3333 (in Chinese with English abstract)

[16]Bapat H, Manahan S E, Larsen D W. An activated carbon product prepared from milo (Sorghum vulgare) grain for use in hazardous waste gasification by chemchar cocurrent flow gasification. Chemosphere, 1999, 39: 23–32

[17]Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z. Effect of banded biochar on dryland wheat production and fertilizer use in southwestern Australia: an agronomic and economic perspective. Austr J Soil Res, 2010, 48: 531–545

[18]张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39: 1445–1451

Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Act Agron Sin, 2013, 39: 1445–1451 (in Chinese with English abstract)

[19]Kim J S, Sparovek G, Longo R M, De Melo W J, Crowley D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem, 2007, 39: 684–690

[20]Rondon M, Lehmann, J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fert Soils, 2007, 43: 699–708

[21]Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant Soil, 2007, 300: 9–20

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!