作物学报 ›› 2015, Vol. 41 ›› Issue (01): 154-159.doi: 10.3724/SP.J.1006.2015.00154
张兴华,高杰,杜伟莉,张仁和*,薛吉全
ZHANG Xing-Hua,GAO Jie,DU Wei-Li,ZHANG Ren-He*,XUE Ji-Quan
摘要:
维持较高的光合作用对于作物适应干旱逆境意义重大,光合电子传递和气孔行为是作物光合机构的重要组成部分,而玉米上有关它们之间的组合响应干旱胁迫研究报道较少。本文将2个主推玉米品种陕单609和郑单958生长在自然光和4个干旱胁迫下的干旱棚内,对其叶片的光系统II (PSII)的电子传递功能和气孔导度进行了研究。结果显示,中度和重度干旱胁迫下2个品种叶片净光合速率(Pn)和气孔导度(Gs)显著下降,而伴随着胞间CO2浓度(Ci)上升,显示光合速率下降是非气孔因素所致。JIP-test分析发现干旱胁迫下2个品种OJIP曲线中出现了K-band,说明光系统II (PSII)放氧复合体(OEC)受到抑制和PSII供体侧与受体侧电子传递不平衡;同时干旱胁迫下反映从PSII供体侧到PSI末端受体电子流的荧光参数显著改变,损伤了光系统II和I之间光合电子传递链,限制CO2同化。品种间光合特性对干旱胁迫的响应存在差异,重度干旱对郑单958叶片光合机构的影响比对品种陕单609大。以上结果表明,中度和重度干旱下玉米品种叶片Pn下降归属于光化学活性的衰退;陕单609光合机构的耐旱性强于郑单958。
[1]张仁和, 杜伟莉, 郭东伟, 张爱瑛, 胡富亮, 李凤艳, 薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化. 作物学报, 2014, 40: 915–923Zhang R H, Du W L, Guo D W, Zhang A Y, Hu F L, Li F Y, Xue J Q. Changes of grain yield and nitrogen use efficiency of maize hybrids released in different eras in Shaanxi Province. Acta Agron Sin, 2014, 40: 915–923 (in Chinese with English abstract).[2]李少昆, 王崇桃. 玉米生产技术创新与扩散. 北京: 科学出版社, 2010. pp 1–32Li S K, Wang C T. Innovation and Diffusion of Corn Production Technology. Beijing: Science Press, 2010. pp 1–32 (in Chinese)[3]Yordanov I, Velikova T, Tsonev T. Plant response to drought, acclimation and stress tolerance. Photosynthetica, 2000, 38: 171–186[4]Eberhard S, Finazzi G, Wollman A. The dynamics of photosynthesis. Annu Rev Genet, 2008, 42: 463–515[5]Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot, 2011, 62: 869–882[6]Pena-Rojas K, Aranda X, Fleck I. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Tree Physiol, 2004, 24: 813–822[7]Bu L D, Zhang R H, Chang Y, Xue J Q, Han M M. Responses of water stress to photosynthetic characteristics of the maize leaf in the seeding. Acta Ecol Sin, 2010, 30: 1184–1192 [8]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dryland corn yield to soil water content at planting. Agric Water Manage, 2009, 96: 330–336[9]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr J Bot, 2009, 75: 34–42[10]Parry M A J, Andralojc P J, Khan S, Lea P J, Keys A J. Rubisco activity: effects of drought stress. Ann Bot, 2002,89: 833–839[11]Galmés J, Ribas-Carbó M, Medrano H, Flexas J. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Environ Exp Bot, 2011, 62: 653–665[12]Massacci A, Nabiev S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195[13]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264[14]Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264[15]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32–42[16]Strasser R J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–155[17]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621[18]张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013, 39: 93–100Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q F. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. Acta Agron Sin, 2013, 39: 93–100 (in Chinese with English abstract)[19]Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant, 2009, 137: 188–19[20]Miyashita K, Tanakamaru S, Maitani T, Kimura K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot, 2005, 53: 205–214[21]Gomes G, Luz C D, Santos R D, Batitucci P, Silva D M, Falqueto A R. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci Hortic, 2012, 142: 49–56[22]Campos H, Trejo C, Valdiva P, Nava G, Martinez C, Ortega C. Stomatal and non-stomatal limitations of bell pepper plants under water stress and re-watering: Delayed restoration of growth and photosynthesis during recovery. Environ Exp Bot, 2014, 98: 56–64[23]Zhang Z S, Li P, Gao H Y, Zhang L T, Yang C, Liu P. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. PLoS One, 2012, 8: 1–8[24]胡富亮, 郭德林, 高杰, 路海东, 张仁和, 薛吉全. 种植密度对春玉米干物质、氮素积累与转运及产量的影响. 西北农业学报, 2013, 20: 60–66Hu F L, Guo D L, Gao J, Lu H D, Zhang R H, Xue J Q. Effects of planting densities on dry matter and nitrogen accumulation and grain yield in spring maize. Acta Agric Boreali-Occident Sin, 2013, 20: 60–66 (in Chinese with English abstract)[25]Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta, 2005, 1706: 250–261[26]Strasser R J, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta, 2010, 1797: 1313–1326[27]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317–345[28]Lawlor D W, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot, 2009, 103: 561–579[29]Mehta P, Allakverdiev S I, Jajoo A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves. Photosynth Res, 2010, 52: 147–155[30]Oukarroum A, El Madidi S, Schansker G, Strasser R J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot, 2007, 60: 438–446 |
[1] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[2] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[3] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[6] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[7] | 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331. |
[8] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[9] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[10] | 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480. |
[11] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[12] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[13] | 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770. |
[14] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[15] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
|