欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 623-632.doi: 10.3724/SP.J.1006.2015.00623

• 耕作栽培·生理生化 • 上一篇    下一篇

海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应

尹宝重1,甄文超1,*,冯悦2   

  1. 1.河北农业大学植物保护学院/.河北省作物生长调控重点实验室, 河北保定 071001;2.河北省信息工程学校, 河北保定 071001
  • 收稿日期:2014-08-27 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-03
  • 通讯作者: 甄文超, E-mail: wenchao@hebau.edu.cn, Tel: 0312-7528158
  • 基金资助:

    本研究由国家“十二五”科技支撑计划项目“粮食丰产科技工程”(2011BAD16B08, 2012BAD04B06, 2013BAD07B05)资助。

Effects of Subsoiling-Seeding on Root Physiological Indices, Water-Saving and Yield-Increasing Behaviors in Summer Maize (Zea mays L.) in Haihe Lowland Plain

YIN Bao-Zhong1,ZHEN Wen-Chao1,*,FENG Yue2   

  1. 1College of Plant Protection, Agricultural University of Hebei/.Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, China; 2Information Engineering School of Hebei Province, Baoding 071001, China
  • Received:2014-08-27 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-03
  • Contact: 甄文超, E-mail: wenchao@hebau.edu.cn, Tel: 0312-7528158

摘要:

于2012—2013年在河北省农林科学院旱作农业研究所深州试验站, 以郑单958为供试品种, 设置夏玉米深松播种和免耕播种两个处理, 从玉米出苗开始, 根据生育进程定期观察玉米根系形态、生理指标及微观结构、玉米冠层光合特性和叶面积指数, 成熟期测定产量, 计算水分利用效率和2 m土体水分储蓄情况。结果表明, 0~60 cm土层, 深松播种处理可提高玉米根系干物质积累、表面积、根长和活跃吸收面积比例, 全生育期分别比免耕播种处理提高30.5%、24.6%、29.7%和56.3%。0~60 cm土层, 深松播种处理玉米根系脯氨酸含量、硝酸还原酶活性和根系活力分别比免耕处理高140%、37%和36.5%。全生育期, 深松播种处理根系伤流液总量比免耕播种处理提高15.2%。0~40 cm土层, 深松播种处理单根和整株根系导水率分别提高15.8%和17%。0~40 cm土层, 深松播种处理玉米根系中柱导管直径增大, 中柱鞘细胞壁及中柱内薄壁细胞的细胞壁增厚栓化, 髓细胞数量增多但整体在髓腔横切面积中所占比例偏小, 后生木质部导管直径增大、数量增多, 皮层厚度降低;0~20 cm土层, 深松播种处理根系皮层中部细胞虽也较大但层数较少, 相当于免耕处理的86.2%。深松播种处理可提高玉米叶面积指数, 全生育期平均比免耕处理高12.5%;深松播种处理还可提高叶片光合速率和光合势。深松播种处理玉米籽粒灌浆速率全生育期平均比免耕播种处理高5%。与免耕处理相比, 深松播种处理2年平均穗粒数、千粒重和产量分别比免耕播种处理提高2.4%、3.9%和8.2%, 耗水量降低9.1%, 产量和水分利用效率分别比免耕处理高8.2%和14.4%, 2 m土体贮水量提高31.7%。

关键词: 海河低平原, 深松播种, 夏玉米, 根系, 生理生态, 节水增产效应

Abstract:

The study was carried out in Shenzhou Experimental Station, Arid Farming Research Institute, Hebei Academy of Agricultural and Forestry Sciences in 2012–2013. The maize variety Zhengdan 958 was used in this experiment with two treatments including sub-soiling seeding (SRT) and no-tillage seeding(NT). From seedling emergence to maturity, the root morphology, physiological parameters and microstructure, canopy photosynthetic characteristics, and leaf area index were regularly measured. At maturity, the yields and the water use efficiency and water storage in 2 m soil layer were investigated. The results showed that SRT increased the root dry mass, surface area, length and active absoiling area ratio in 0–60 cm soil layer, with the increase of 30.5%, 24.6%, 29.7%, and 56.3%,respectively, in comparison with NT. In addition, SRT also increased the proline content, nitrate reductase activity and activity of roots compared with NT in this soil layer, with the increase of 140%, 37%, and 36.5%, respectively. The total root bleeding sap in SRT increased by 15.2% compared with NT in the whole growth stage. In 0–40 cm soil layer, the hydraulic conductivity in single root and the roots per plant around whole growth stage in SRT increased by 15.8% and 17% respectively, in comparison with NT. In SRT, the diameter of stele vessel was increased, cell walls of pericycle and stele parenchyma were thickened, and the number of pith cells were increased, but its section area ratio in stale decreased compared with NT. Moreover, the numbers and diameter of xylem vessel in SRT increased, but the cortical thickness in roots decreased. In 0–20cm soil layer, although the middle cortical cells of root in SRT were larger than those of NT, but there number was only 86.2% of NT. SRT also increased the LAI and photosynthetic rate. The grain-filling rate in SRT treatment was also increased, with 5% higher than in NT. In two growth seasons, compared with NT, the spike kernels, 1000-grain weight, and yield in SRT treatment were increased by 2.4%, 3.9% and 8.2%, respectively, whereas the water consumption was reduced by 9.1%, the water use efficiency was increased by 14.4%, and the water storage amount in 2 m soil layer was increased by 31.7%.

Key words: Haihe Lowland Plain, Subsoiling-seeding, Summer maize, Root, Physiological ecology, Water-saving and yield-increasing effect

[1]Erdem G, Yildirim S, Dilmac M, Ece A. The effects of soil tillage on stem development of pepper plant. J ApplSci, 2007, 7: 342–348

[2]Alvarez R, Steinbach H S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas.Soil Tillage Res, 2009, 104: 1–15

[3]Mahía J, Martin A, Carballas T,Dlaz-Ravina M. Atrazine degradation and enzyme activity in an agricultural soil under two tillage systems. Sci Total Environ, 2007, 378: 187–194

[4]吕丽华, 王慧军, 贾秀领, 梁双波. 黑龙港平原区冬小麦、夏玉米节水技术模式适应性模糊评价研究. 节水灌溉, 2012, (6): 5–8

Lü L H, Wang H J, Jia X L, Liang S B. Fuzzy evaluation of technique adaptability of water-saving irrigation mode in Heilonggang plain. Water Saving Irrig, 2012, (6): 5–8 (in Chinese with English abstract)

[5]Huang S, Sun Y N, Rui W Y, Liu W R, Zhang W J. Long-term effect of no-tillage on soil organic carbon fractions in a continuous maize cropping system of Northeast China. Pedosphere, 2010, 20(3): 285–292

[6]Carterm R, Sanderson J B, Ivany J A, White R P. Influence of rotation and tillage on forage maize productivity, weed species, and soil quality of a fine sandy loam in the cool-humid climate of Atlantic Canada. Soil Tillage Res, 2002, 67: 85–98

[7]Wang X B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Potential effect of conservation tillage on sustainable land use a review of global long-term studies. Pedosphere, 2006, 16: 587–595

[8]邱红波, 何腾兵, 龙友华, 莫庆忠. 免耕栽培对玉米根系性状及其产量的影响. 贵州农业科学, 2011, 39(9): 55–57

Qiu H B, He T B, Long Y H, Mo Q Z. Effect of no-tillage cultivation on maize root characters and yield.GuizhouAgricSci, 2011, 39(9): 55–57 (in Chinese with English abstract)

[9]梁建斌, 刘今河, 杨涛. 不同耕作方式对玉米根系生长发育及土壤水分的影响. 安徽农业科学, 2006, 34: 2353–2354

Liang J B, Liu J H, Yang T. Effect of different cultivation ways to growth of maize root system and soil water content.J Anhui AgricSci, 2006, 34: 2353–2354 (in Chinese with English abstract)

[10]彭文英. 免耕措施对土壤水分及利用效率的影响. 土壤通报, 2007, 38: 379–383

Peng W Y. Effect of no-tillage on soil water regime and water use efficiency. Chin J Soil Sci,2007, 38: 379–383 (in Chinese with English abstract)

[11]Toyakawa H, Triplett G B, Dick W A. No-tillage crop production: A revolution in agriculture. Agron J,2008, 100: 153–165

[12]Fernandez U O, Virto I, Bescansa P, Imaz M J, Enrique A, Karlen D L. No-tillage improvement of soil physical quality in calcareous, degradation prone semiarid soils. Soil Tillage Res, 2009, 106: 29–35

[13]彭贵喜, 刘刚. 保护性耕作中深松技术的应用研究. 农业科技与装备, 2009, (1): 119–120

Peng G X, Liu G. Application research of subsoiling technology in conservation tillage.AgricSci&Technol Equip, 2009, (1): 119–120 (in Chinese)

[14]Rosendahl L, Jakobsen I. Rhizobium strain effects on pea: The relation between nitrogen accumulation, phosphoenolpyruvate carboxylase activity in nodules and asparagine in root bleeding sap. Physiol Plant, 2006, 71(3): DOI: 10.1111/j.1399-3054.1987.tb04343.x

[15]高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 46, 51, 61, 228

Gao J F. Plant Physiology Experiment Instruction. Peking: High Education Press, 2006. pp 46, 51, 61, 228 (in Chinese)

[16]Miller D M. Studies of root function in Zea mays: I. Apparatus and methods. Can J Bot, 1980, 59: 811–818

[17]王宁, 齐永志, 时荣荣, 张悦, 赵斌, 甄文超. 草莓根系的石蜡切片制作及侧根发育过程的观察. 河北农业大学学报, 2013, 36(3): 34–38

Wang N, Qi Y Z, Shi R R, Zhang Y, Zhao B, Zhen W C.Manufacture of paraffin section on strawberry root and observation on the development of lateral root. J AgricUniv Hebei, 2013, 36(3): 34–38 (in Chinese with English abstract)

[18]Kasper M, Buchan G D, Mentler A, Blum W E H. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil Tillage Res, 2009, 105: 192–199

[19]Peuke A D.The chemical composition of xylem sap in VitisviniferaL.cv. Riesling during vegetative vineyard soils and as influenced by nitrogen fertilizer.Am J Enol Vit, 2000, 51: 329–339

[20]孙艳, 王益权, 杨梅, 徐雷. 土壤紧实胁迫对黄瓜根系活力和叶片光合作用的影响. 植物生理与分子生物学学报, 2005, 31: 545–550

Sun Y, Wang Y Q, Yang M, Xu L. Effects of soil compactness stress on root activity and leaf photo-synthesis of cucumber.J Plant PhysiolMolBiol, 2005, 31(5): 545–550 (in Chinese with English abstract)

[21]Hurley M B, Rowarth J S. Resistance to root growth and changes in the concentration of ABA within the root and xylem sap during root-restriction stress. J Exp Bot, 1999, 335: 799–804

[22]Davies W J, Zhang J. Root signals and the regulation of growth and development of plant in drying soil. Annu Rev Plant Physiol Plant MolBiol, 1991, 42: 55–76

[23]丁昆仑, Hann M J. 深松耕作对土壤水分物理特性及作物生长的影响. 中国农村水利水电, 1997, (11): 13–16

Ding K L. Effect of deep loosen cultivation to soil moisture physical characteristics and crop growing. China Rural Water and Hydropower, 1997, (11): 13–16 (in Chinese with English abstract)

[24]战秀梅, 李秀龙, 韩晓日, 李亭亭, 杨劲峰, 刘小虎. 深耕及秸秆还田对春玉米产量、花后碳氮积累及根系特征的影响. 沈阳农业大学学报, 2013, 43: 461–466

Zhan X M, Li X L, Han X R, Li T T, Yang J F, Liu X H. Effects of subsoiling and straw-returning on yield and post-anthesis dry matter and nitrogen accumulation and root characteristics of spring maize. J Shenyang AgricUniv, 2012, 43: 461–466 (in Chinese with English abstract) 

[25]宋日, 吴春胜, 牟金明, 徐克章. 深松土对玉米根系生长发育的影响. 吉林农业大学学报, 2000, 22(4): 73–75

Song R, Wu C S, Mu J M, Xu K Z. Effect of subsoiling on root growth of maize. J Jilin AgricUniv, 2000, 22(4): 73–750 (in Chinese with English abstract)

[26]North G B, Nobel P S. Hydraulic conductivity of concentric root tissues of Agave desertiEngelm. Under wet and drying conditions.New Phytol, 1995, 130: 47–57 (in Chinese with English abstract)

[27]North G B, Nobel P S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agavedesertii (Agavaceae). Am J Bot, 1991, 78: 906–915

[28]刘明, 来永才, 李炜, 肖佳雷, 毕影东, 刘淼, 李琬, 齐华. 深松与施氮对玉米群体光合特性的影响, 作物杂志, 2013,(6): 95–99

Liu M, Lai Y C, Li W, Xiao J L, Bi Y D, Liu M, Li W, Qi H. Effects of deep loosening and nitrogen application rate on population photosynthesis in maize. Crops, 2013, (6): 95–99 (in Chinese with English abstract)

[29]孙贵臣, 冯瑞云, 陈凌, 穆志新, 张瑞军, 阎晓涛, 闫贵云. 深松免耕种植对土壤环境及玉米产量的影响, 作物杂志, 2014, (4): 137–140

Sun G C, Feng L Y, Chen L, Mu Z X, Zhang R J, Yan X T, Yan G Y. Effect of deep loosening and zero tillage on soil environment and maize growth. Crops, 2014, (6): 137–140 (in Chinese with English abstract)

[30]王秀珍, 邱立春. 中耕深松对土壤蓄水及玉米根系生长的影响. 沈阳农业大学学报, 2011, 42: 630–633

 Wang X Z, Qiu L C. Influence of subsoiling to moisture of soil and root growth of maize.J Shenyang AgricUniv, 2011, 42: 630–633 (in Chinese with English abstract)

[31]齐华, 刘明, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式对土壤物理性状及玉米根系分布的影响. 华北农学报, 2012, 27(4): 191–196

Qi H, Liu M, Zhang W J, Zhang Z P, Li X F, Song Z W, Yu J L, Wu Y N. Effect of deep loosening mode on soil physical characteristics and maize root distribution. ActaAgricBoreali-Sin, 2009, 17(2): 120–123 (in Chinese with English abstract)

[32]Raper R L, Reeves D W, Shaw J N, van Santen E, Mask P L. Remove from marked records using site-specific subsoiling to minimize draft and optimize corn yields. Trans ASAE, 2005, 48: 2047–2052

[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[4] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[5] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[6] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[7] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[8] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[9] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[10] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[11] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[12] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[13] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[14] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[15] 冯珺珩,黄金凤,刘天奇,曹凑贵,李成芳. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!