欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 642-650.doi: 10.3724/SP.J.1006.2015.00642

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响

杨峰,娄莹,廖敦平,高仁才,雍太文,王小春,刘卫国,杨文钰*   

  1. 四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室,四川成都 611130
  • 收稿日期:2014-10-23 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-03
  • 通讯作者: 杨文钰, E-mail: mssiyangwy@sicau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100402)和国家公益性行业(农业)科研专项(201203096, 201103001)资助。

Effects of Row Spacing on Crop Biomass, Root Morphology and Yield in Maize-Soybean Relay Strip Intercropping System

YANG Feng,LOU Ying,LIAO Dun-Ping,GAO Ren-Cai,YONG Tai-Wen,WANG Xiao-Chun,LIU Wei-Guo,YANG Wen-Yu*   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
  • Received:2014-10-23 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-03
  • Contact: 杨文钰, E-mail: mssiyangwy@sicau.edu.cn

摘要:

空间配置是影响间作套种作物生长和产量构成的关键因素之一。本研究固定玉米-大豆套作带宽200 cm,玉米采用宽窄行种植,设置4个玉米窄行行距为20 cm (A1)、40 cm (A2)、60 cm (A3)和80 cm (A4)套作处理,2个玉米和大豆净作对照处理,研究行距配置对套作系统中玉米和大豆生物量、根系及产量的影响。结果表明,套作大豆冠层光合有效辐射和红光/远红光比值均低于净作,且随着玉米窄行的增加而降低。套作系统中大豆地上地下生物量、总根长、根表面积和根体积从第三节龄期(V3)到盛花期(R2)逐渐增加,但随着玉米窄行的增加而降低。套作玉米地上地下生物量从抽雄期到成熟期逐渐增加,根体积却逐渐降低,但这些参数随玉米窄行的变宽而增加。玉米和大豆在带状套作系统中产量均低于净作,且随玉米窄行的变宽,玉米产量逐渐增加,2012和2013两年最大值平均为6181 kg hm-2,而大豆产量逐渐降低,两年最大值平均为1434 kg hm-2,产量变化与有效株数和粒数变化密切相关。此外,玉米-大豆带状套作群体土地当量比(LER)大于1.3,最大值出现在A2处理,分别为1.59 (2012年)和1.61 (2013年),且最大经济收益也出现在A2处理(2年每公顷平均收益为1.93万元)。因此,合理的行距配置对玉米-大豆带状套作系统中作物的生长、产量构成和群体效益具有重要的作用。

关键词: 玉米, 大豆, 套作, 空间配置, 土地当量比

Abstract:

Spatial patterns of cropping directly affect crop growth and yields in intercropping systems. A two year field experiment was conducted in 2012−2013 to analyze the effects of different row spacing patterns in maize and soybean relay strip intercropping system at 2:2 maize-to-soybean on crop biomass, root morphology and yield. The treatments were six row spacing patterns including four maize planting patterns with the control of sole cropping of maize and soybean. The maize planting patterns were compound of wide row and narrow row lying: “180+20” cm, “160+40” cm, “140+60” cm, and “120+80” cm. Soybean was planted in the wide rows before the reproductive stage of maize. The row spacing of the sole cropping of maize and soybean was 70 cm. The biomass, total root length, root surface area and root volume of intercropped soybean increased from V3 to R2, and decreased with increasing the maize narrow-row spacing. The above- and below-ground biomass of intercropped maize increased from tasseling to maturity stages, whereas opposite results were found in root volume. In addition, the intercropped maize biomass and root volume increased with increasing maize narrow-row spacing. The yields of maize and soybean in intercropping condition were lower than those in monoculture. Yield of intercropped maize increased with increasing the maize narrow-row spacing, with an average of two year maximum values of 6181 kg ha-1. Contrary trends were observed in intercropped soybean, with an average maximum yield of 1434 kg ha-1. Crop grain yield was related to effective plants and grain numbers per plant in maize-soybean relay strip intercropping system. Total intercropping yields were higher than sole cropping yields of maize and soybean, and the land equivalent ratio (LER) of the intercropping system was above 1.3. The maximum LER appeared in “60+40” cm treatment, which was 1.59 and 1.61 in 2012 and 2013, respectively. Similar results were found in economic benefit, the average of maximum value in both years was 19.3 thousand Yuan per hectare. Therefore, optimum row spacing pattern plays an important role in improving crop growth and increasing yield in maize-soybean relay strip intercropping system.

Key words: Maize, Soybean, Relay intercropping, Spatial pattern, Land equivalent ratio

[1]Willey R. Intercropping: its importance and research needs. I. Competition and yield advantages. Field Crops Abstr, 1979, 32: 1–10



[2]Szumigalski A R, Van Acker R C. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron J, 2006, 98: 1030–1040



[3]Willey R W. Resource use in intercropping systems. Agric Water Manag, 1990, 17: 215–231



[4]Ghosh P K, Tripathi A K, Bandyopadhyay K K, Manna M C. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Eur J Agron, 2009, 31: 43–50



[5]王潮生. 农业文明寻迹. 北京: 中国农业出版社, 2011. pp 25–26



Wang C S. The Tracing of Agricultural Civilization. Beijing: China Agriculture Press, 2011. pp 25–26 (in Chinese)



[6]Li L, Zhang L Z, Zhang F S. Crop mixtures and the mechanisms of over yielding. Encycl Biodiversity, 2013: 382–395



[7]Amossé C, Jeuffroy M H, David C. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. Field Crops Res, 2013, 145: 78–87



[8]Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping system in relation to light quantity and red:far-red ratio. Field Crops Res, 2014, 155: 245–253



[9]Echarte L, Maggiora A D, Cerrudo D, Gonzalez V H, Abbate P, Cerrudo A, Sadras V O, Calviño P. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res, 2011, 121: 423–429



[10]Borghi É, Crusciol C A C, Nascente A S, Mateus G P, Martins P O, Costa C. Effects of row spacing and intercrop on maize grain yield and forage production of palisade. Crop Pasture Sci, 2012, 63: 1106–1113



[11]陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. 植物营养与肥料学报, 2012, 18: 52–59



Chen Y L, Wu Q P, Chen X C, Chen F J, Zhang Y J, Li Q, Yuan L X, Mi G H. Root growth and its response to increasing planting density in different maize hybrids. Plant Nutr Fert Sci, 2012, 18: 52–59 (in Chinese with English abstract)



[12]李艳大, 汤亮, 张玉屏, 朱相成, 曹卫星, 朱艳. 水稻冠层光截获与叶面积和产量的关系. 中国农业科学, 2010, 43: 3296–3305



Li Y D, Tang L, Zhang Y P, Zhu X C, Cao W X, Zhu Y. Relationship of PAR interception of canopy to leaf area and yield in rice. Sci Agric Sin, 2010, 43: 3296–3305 (in Chinese with English abstract)



[13]Hertel C, Leuchner M, Rötzer T, Menzel A. Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters. Agric For Meteorol, 2012, 165: 82–91



[14]邹聪明, 王国鑫, 胡小东, 张云兰, 薛兰兰, Anjum S A, 王龙昌. 秸秆覆盖对套作玉米苗期根系发育与生理特征的影响. 中国生态农业学报, 2010, 18: 496–500



Zou C M, Wang G X, Hu X D, Zhang Y L, Xue L L, Anjum S A, Wang L C. Effect of straw mulching on root development and physiological characteristics of intercropped maize at seedling stage. Chin J Eco-Agric, 2010, 18: 496–500 (in Chinese with English abstract)



[15]金剑, 王光华, 刘晓冰, 李艳华, 陈雪丽, Herbert S J. 东北黑土区高产大豆R5期根系分布特征. 中国油料作物学报, 2007, 29: 266–271



Jin J, Wang G H, Liu X B, Li Y H, Chen X L, Herbert S J. Characteristics of root distribution at R5 stage in high yielding soybean in black soil. Chin J Oil Crop Sci, 2007, 29: 266–271 (in Chinese with English abstract)



[16]李宗新, 陈源泉, 王庆成, 刘开昌, 高旺盛, 隋鹏. 高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响. 作物学报, 2012, 38: 1286–1294



Li Z X, Chen Y Q, Wang Q C, Liu K C, Gao W S, Sui P. Influence of planting density on root spatio-temporal distribution of different types of maize under high-yielding cultivation conditions. Acta Agron Sin, 2012, 38: 1286–1294 (in Chinese with English abstract)



[17]Zhang G G, Yang Z B, Dong S T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res, 2011, 124: 66–73



[18]Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G. Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnol Adv, 2012, 30: 1047–1058



[19]Maddonni G A, Otegui M E. Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set. Field Crops Res, 2004, 85: 1–13



[20]Liu T D, Song F B, Liu S Q, Zhu X C. Light interception and radiation use efficiency response to narrow-wide row planting patterns in maize. Aust J Crop Sci, 2012, 6: 506–513



[21]管建慧, 郭新宇, 刘洋, 刘克利, 王纪华, 郭小东. 不同密度处理下玉米根系干重空间分布动态的研究. 玉米科学, 2007, 15(4): 105–108



Guan J H, Guo X Y, Liu Y, Liu K L, Wang J H, Guo X D. Study on dynamic variation of root dry weight space distribution on different densities of maize. J Maize Sci, 2007, 15(4): 105–108 (in Chinese with English abstract)



[22]Gao Y, Duan A W, Sun J S, Li F S, Liu Z G, Liu H, Liu Z D. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Res, 2009, 111: 65–73



[23]Mead R, Willey R W. The concept of “Land Equivalent Ratio” and advantage in yields from intercropping. Exp Agric, 1980, 16: 217–228



[24]Aggarwal G C, Sidhu A S. Effect of irrigation and nitrogen on maize-cowpea fodder intercropping at Ludhiana, India: Advantages and intercrop competition. Field Crops Res, 1988, 18: 177–184

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!