欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1105-1111.doi: 10.3724/SP.J.1006.2015.01105

• 耕作栽培·生理生化 • 上一篇    下一篇

不同栽培方式对长江下游棉田资源利用效率的影响

张常赫,戴艳娇,杨洪坤,张馨月,杜祥备,陈兵林,周治国*   

  1. 南京农业大学农学院 / 农业部作物生长调控重点开放实验室,江苏南京 210095
  • 收稿日期:2015-01-16 修回日期:2015-05-04 出版日期:2015-07-12 网络出版日期:2015-05-14
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费项目(201203096)资助。

Effects of Different Cultivation Patterns on Cotton Field Resources Use Efficiency in Yangtze River Valley

ZHANG Chang-He,DAI Yan-Jiao,YANG Hong-Kun,ZHANG Xin-Yue,DU Xiang-Bei,CHEN Bing-Lin,ZHOU Zhi-Guo*   

  1. Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-01-16 Revised:2015-05-04 Published:2015-07-12 Published online:2015-05-14

摘要:

我国农业对自然环境依赖性强,农业生产环境相对恶劣、资源利用效率低下,作物栽培理论与技术需要不断创新和完善。为建立与当前生产模式相匹配的作物高产高效栽培管理方式,选用棉花品种泗杂3号,于2012—2013年在长江下游棉区(江苏大丰)不同地力水平田块(高、低)进行麦棉两熟栽培管理方式定位试验,设超高产栽培、常规栽培和高产高效栽培,系统测定棉花生物量、产量和生育期间的温光、氮肥资源利用效率。结果表明,栽培方式和地力水平显著影响棉花产量,而产量的差异主要由温光、氮肥资源利用效率的差异造成。棉花产量提高的限制因子是低下的资源利用效率。高产高效栽培较常规栽培产量提高27.5%,温光资源利用效率分别提高27.7%、23.4%、氮肥偏生产力提高10.1%,是长江下游较为适宜的栽培方式。因此未来生产中应进一步合理优化栽培方式来提高棉田资源利用效率,以达到高产高效的目标。

关键词: 棉花, 栽培管理方式, 产量, 资源利用效率

Abstract:

The agricultural production in China is mainly dependent on nature environment. But the use efficiency of field resources in China is lower than those in developed countries, and the current crop cultivation theory and technology need to be innovated and improved continuously. The efficiency field stationary experiments using cotton cultivate Siza 3 with different cultivation patterns were carried out in high and low soil fertility levels in Dafeng, Jiangsu province. The cultivation patterns included super high cultivation patterns (SH), farmers practice cultivation (FP), high yield and high efficiency cultivation (HH). The result showed that lint yield of cotton was significantly affected by cultivation patterns and soil fertility levels. Lint yield difference was correlated with the differences of temperature production efficiency (TPE), radiation use efficiency (RUE) and nitrogen partial factor productivity (NPEP) under different cultivation patterns. Our results suggested that the key factor limited cotton production is the lower resources use efficiency. The lint yield, temperature and radiation use efficiency and nitrogen partial factor productivity of HH were 27.5%, 27.7%, 23.4%, and 10.1% higher than there of FP. Therefore, HH should be encouraged to extend in the Yangtze River Valley, and field resources use efficiency in wheat-cotton double cropping system should be further improved in the future for increasing cotton productivity.

Key words: Cotton, Cultivation patterns, Yield, Resources use efficiency

[1]Ali H, Afzal M N, Muhammad D. Effect of sowing dates and plant spacing on growth and dry matter partitioning in cotton (Gossypium hirsutum L.). Pakistan J Bot, 2009, 41: 2145–2155



[2]Ali M A, Tatla Y H, Aslam M. Response of cotton (Gossypium hirsutum L.) to potassium fertilization in arid environment. J Agric Res, 2007, 45: 191–198



[3]Ruiz R, Bertero H. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. Eur J Agron, 2008, 29: 144–152



[4]Zhang L, Van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res, 2008, 107: 29–42



[5]Dong H Z , Kong X Q , Li W J, Tang W, Zhang D M. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res, 2010, 119: 106–113



[6]Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G Y. Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Res, 2013, 145: 52–59



[7]Braunack M, Bange M, Johnston D. Can planting date and cultivar selection improve resource use efficiency of cotton systems? Field Crops Res, 2012, 137: 1–11



[8]Ali, Hakoomat A, Muhammad N A, Shakeel M, Dilbaugh. Effect of cultivars and sowing dates on yield and quality of (Gossypium hirsutum L) cotton. J Food, Agric Environ, 2009, 7: 244–247



[9]Milroy S P, Bange M P. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Sci, 2003, 43: 904–913



[10]Boquet D J, Breitenbeck G A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci, 2000, 40: 1685–1693



[11]O’Connell M G, O’Leary G J, Whitfield D M, Connor D J. Interception of photosynthetically active radiation and radiation-use efficiency of wheat, field pea and mustard in a semi-arid environment. Field Crops Res, 2004, 85: 111–124



[12]Steduto P, Albrizio R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agric For Meteorol, 2005, 130: 269–281



[13]Howden S M, Soussana J F, Tubiello F N, Chhetri N, Dunlop M, Meinke H. Adapting agriculture to climate change. Proc Natl Acad Sci USA, 2007, 104: 19691–19696



[14]Smit B, Skinner M W. Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Change, 2002, 7: 85–114



[15]Du X B, Chen B L, Shen T Y, Zhang Y X, Zhou Z G. Effect of cropping system on radiation use efficiency in double–cropped wheat–cotton. Field Crops Res, 2015, 170: 21–31



[16]Van Opstal N V, Caviglia O P, Melchiori R J M. Water and solar radiation productivity of double-crops in a humid temperature area. Aust J Crop Sci, 2011, 5: 1760–1766



[17]Caviglia O P, Sadras V O, Andrade F H. Intensi?cation of agriculture in the south-eastern Pampas I. Capture and efficiency in the use of water and radiation in double-cropped wheat-soybean. Field Crops Res, 2004, 87: 117–129



[18]Ferrise R, Triossi A, Stratonovitch P, Bindi M, Martre P. Sowing date and nitrogen fertilization effects on dry matter and nitrogen dynamics for durum wheat: an experimental and simulation study. Field Crops Res, 2010, 117: 245–257



[19]Willey R W. Resource use in intercropping systems. Agric Water Manag, 1990, 17: 215–231



[20]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282–290



[21]Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G. Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Res, 2013, 145: 52–59



[22]Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy. Agric For Meteorol, 2002, 110: 203–215



[23]Hou Z A, Li P F, Li B G, Gong J, Wang Y N. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil, 2007, 290: 115–126



[24]McConnell J S, Baker W H, Miller D M, Frizzell B S, Varvil J J. Nitrogen fertilization of cotton cultivars of differing maturity. Agron J, 1993, 85: 1151–1156



[25]Yang G Z, Tang H Y, Tong J, Nie Y C, Zhang X L. Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crops Res, 2012, 125: 161–166



[26]Yan X, Jin J Y, He P, Liang M Z. Recent advances on the technologies to increase fertilizer use efficiency. Agric Sci China, 2008, 7: 469–479



[27]Koch B, Khosla R, Frasier W M, Westfall D G, Inman D. Site-specific management: economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J, 2004, 96: 1572–1580

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!