欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1112-1120.doi: 10.3724/SP.J.1006.2015.01112

• 耕作栽培·生理生化 • 上一篇    下一篇

不同年代玉米品种根系对低氮干旱胁迫的响应分析

牛平平1,穆心愿1,张星1,杨春收2,李潮海1,*   

  1. 1 河南农业大学农学院 / 河南粮食作物协同创新中心,河南郑州 450002;2 郑州市粮丰农业科技有限公司,河南郑州 450002
  • 收稿日期:2014-12-31 修回日期:2015-05-04 出版日期:2015-07-12 网络出版日期:2015-05-14
  • 通讯作者: 李潮海, E-mail: lichaohai2005@163.com, Tel: 0371-63555629
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201203100)和国家现代农业产业技术体系建设专项(CARS-02-19)资助。

Response of Roots of Maize Varieties Released in Different Years to Low Nitrogen and Drought Stresses

NIU Ping-Ping1,MU Xin-Yuan1,ZHANG Xing1,YANG Chun-Shou2,LI Chao-Hai1,*   

  1. 1 Agronomy College, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China;
    2 Zhengzhou Liangfeng Seed Industry Co., Ltd. Zhengzhou 450002, China
  • Received:2014-12-31 Revised:2015-05-04 Published:2015-07-12 Published online:2015-05-14
  • Contact: 李潮海, E-mail: lichaohai2005@163.com, Tel: 0371-63555629

摘要:

1973年以来5个主推玉米品种中单2号、丹玉13、掖单13、农大108和郑单958以及新品种豫单606为材料,在低氮和低氮干旱复合胁迫下,研究了品种更替过程中根系变化特征。结果表明,随年代推进,玉米品种根干重、根长及根表面积呈先升后降又升的趋势,早期品种的3个根系性状逐渐增加,以获取更多的水分和养分,现代品种的3个根系性状逐渐减少,以减少冗余器官的消耗,而新品种有所上升,以满足产量持续增长所需水分和养分。在低氮和低氮干旱复合胁迫下,与早期品种相比,现代品种根干重变化小,但根长和根表面积增加多,根系平均直径变细,伤流量减少不显著。上述结果表明,不同年代玉米品种根系逐渐优化,现代品种根系形态调节能力增强,对低氮和低氮干旱复合胁迫的耐性提高。

关键词: 不同年代, 玉米, 根系, 低氮, 低氮干旱复合胁迫

Abstract:

The changes in root characteristics were studied under low nitrogen stress (LN) and combined stress of low nitrogen and drought (LD) using six maize varieties released from 1973 to 2009, including Zhongdan 2, Danyu 13, Yedan 13, Nongda 108 Zhengdan 958, and a new variety Yudan 606. The result showed that root dry weight, root length and root surface area of the varieties increased at first and then decreased, finally increased again in the process of time. The increase of the three parameters in earlier released varieties could get more water and nutrition from soil, the decrease of these in later released varieties was available to reduce the redundant organ’s dry matter consumption, and the increase again of these in the new variety would meet water and nutrition requirements for yield increase continuously. Compared with the old varieties, root dry weight of the modern varieties changed smaller, root length and surface areas increased more, root average diameter became thinner, root bleeding sap decreased non-significantly under the LN and LD conditions. These results suggested that root characteristics of the varieties have been optimized gradually, the adjustment ability of root morphology, and the LN and LD stress tolerance in modern varieties have been increased.

Key words: Different eras, Maize, Root, Low nitrogen, Combined stress of low nitrogen and drought

[1]张世煌, 徐志刚. 耕作制度改革及其对农业技术发展的影响. 作物杂志, 2009, (1): 1–3



Zhang S H, Xu Z G. Reform of farming system and its impact on development of agricultural technology. Crops, 2009, (1): 1–3 (in Chinese)



[2]Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J. Maize yield gains in Northeast China in the last six decades. J Integr Agric, 2013, 12: 630–637



[3]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1603



[4]Donald N, Duvick. The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron, 2005, 86: 83–146



[5]田清震, 张世煌, 李新海, 李明顺, 谢传晓. 玉米育种发展动态. 玉米科学, 2007, 15(1): 24–28



Tain Q Z, Zhang S H, Li X H, Li M S, Xie C X. Technology development and strategy in maize breeding. J Maize Sci, 2007, 15(1): 24–28(in Chinese with English abstract)  



[6]陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年来我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80–85



Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012, 38: 80–85 (in Chinese with English abstract)



[7]王玉贞, 李维岳, 尹枝瑞. 玉米根系与产量关系的研究进展. 吉林农业科学, 1999, 24(4): 6–8



Wang Y Z, Li W Y, Yin Z R. Research advancement of the relation between corn root and yield. Jilin Agric Sci, 1999, 24(4): 6–8(in Chinese)



[8]戴俊英, 鄂玉江, 顾慰连. 玉米根系的生长规律及其与产量关系的研究: II. 玉米根系与叶的相互作用及其与产量的关系. 作物学报, 1988, 14: 310–314



E Y J, Dai J Y, Gu W L. Studies on the relationship between root growth and yield in maize (Zea mays): II. The interaction of root system and leaves of maize and its relation with yield. Acta Agron Sin, 1988, 14: 310–314(in Chinese with English abstract)  



[9]杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36–46



Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36–46 (in Chinese with English abstract)



[10]Hammer G L, Dong Z, Mclean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci, 2009, 49: 299–312



[11]王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: I. 根系活性与ATPase活性的变化. 作物学报, 2002, 28: 185–189



Wang K J, Dong S T, Hu C H, Liu K C, Zhang J W. The evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s: I. Changes of root vigor & ATPase activity. Acta Agron Sin, 2002, 28: 185–189 (in Chinese with English abstract)



[12]王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: II. 根系保护酶活性及膜质过氧化作用的变化. 作物学报, 2002, 28: 384–388



Wang K J, Dong S T, Hu C H, Liu K C, Zhang J W. The evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s: II. Changes of the protective enzyme activities and lipid per oxidation. Acta Agron Sin, 2002, 28: 384–388 (in Chinese with English abstract)



[13]王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25: 472–475



Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of maize root distribution in space-time during maize varieties replacing in China. Chin J Plant Ecol, 2001, 25: 472–475 (in Chinese with English abstract)



[14]Chen X C, Zhang J, Chen Y L, Li Q, Chen F J, Yuan L X, Mi G H. Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant Soil, 2014, 374: 121–130



[15]王思思. 干旱对我国不同年代玉米杂交种苗期生理特性的影响. 山东农业大学硕士学位论文, 2009



Wang S S. Effect of Drought on Physiological Characters of Maize Cultivars in Different Eras in China during Seeding Stage. MS Thesis of Shandong Agricultural University, Tai’an, China, 2009(in Chinese with English abstract)



[16]Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889–3900



[17]张景莲. 1982年以来我国玉米品种的演变. 河南农业科学, 2008, 37(6): 36–39



Zhang J L. Evolution of maize varieties in China since 1982. Henan Agric Sci, 2008, 37(6): 36–39 (in Chinese)



[18]司马林. 超高产玉米豫单606. 河南科技报, 2014.07.25



Si M L. A super high-yield variety: Yudan 606. Henan Sci Tech News, 2014.07.25 (in Chinese)



[19]陆卫平, 张其龙, 卢家栋, 王昭, 宗寿余. 玉米群体根系活力与物质积累及产量的关系. 作物学报, 1999, 25: 718–722



Lu W P, Zhang Q L, Lu J D, Wang Z, Zong S Y. Relationship of root activity to dry matter accumulation and grain yield in maize (Zea mays L.). Acta Agron Sin, 1999, 25: 718–722 (in Chinese with English abstract) 



[20]孙庆泉, 胡昌浩, 董树亭, 王空军. 我国不同年代玉米品种生育全程根系特性演化的研究. 作物学报, 2003, 29: 641–645



Sun Q Q, Hu C H, Dong S T, Wang K J. Evolution of root characters during all growth stage of maize cultivars in different eras in China. Acta Agron Sin, 2003, 29: 641–645 (in Chinese with English abstract)



[21]Zhang F L, Niu X K, Zhang Y M, Xie R Z, Liu X, Li S K, Gao S J. Studies on the root characteristics of maize varieties of different eras. J Integr Agric, 2013, 12: 426–435



[22]修文雯, 田晓东, 陈传晓, 彭正萍, 李少昆, 张凤路. 充足灌水条件下不同年代玉米品种根系性状比较研究. 玉米科学, 2013, 21(2): 78–82



Xiu W W, Tian X D, Chen C X, Peng Z P, Li S K, Zhang F L. Comparative study on the characteristics of maize root under the conditions of saturated irrigation in different eras. J Maize Sci, 2013, 21(2): 78–82 (in Chinese with English abstract)



[23]Zhang D Y, Sun G J, Jiang X H. Donald's ideotype and growth redundancy: a game theoretical analysis. Field Crops Res, 1999, 61: 179–187



[24]金成忠, 许德威. 作为根系活力指标的伤流液简易收集法. 植物生理学通讯, 1959, (4): 51–53



Jin C Z, Xu D W. Simple method to collect bleeding sap as an indicator of root activity. Plant Physiol Commun, 1959, (4): 51–53 (in Chinese)



[25]梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 扬州大学学报, 1993, 14(4): 25–30



Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice (O. sativa. L.). J Yangzhou Univ, 1993, 14(4): 25–30 (in Chinese with English abstract)



[26]李从峰, 赵明, 刘鹏, 张吉旺, 杨今胜, 柳京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应. 中国农业科学, 2013, 46: 2421–2429



Li C F, Zhao M, Liu P, Zhang J W, Yang J S, Liu J G, Wang K J, Dong S T. Responses of main traits of maize hybrids and their parents to density in different eras of China. Sci Agric Sin, 2013, 46: 2421–2429 (in Chinese with English abstract)



[27]Melchiori R J M, Cavigliaa O P. Maize kernel growth and kernel water relations as affected by nitrogen supply. Field Crops Res, 108: 198–205



[28]张卫星, 赵致, 柏光晓, 付芳婧, 曹绍书. 不同玉米杂交种对水分和氮胁迫的响应及其抗逆性. 中国农业科学, 2007, 40: 1361–1370



Zhang W X, Zhao Z, Bai G X, Fu F J, Cao S S. Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance. Sci Agric Sin, 2007, 40: 1361–1370 (in Chinese with English abstract)



[29]彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用. 中国农业科学, 2009, 42: 843–853



Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843–853 (in Chinese with English abstract)



[30]顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征. 植物生态学报, 2011, 35: 558–566



Gu D X, Tang L, Xu Q J, Lei X J, Cao W X, Zhu Y. Root growth and distribution in rice cultivars as affected by nitrogen and water supply. Chin J Plant Ecol, 2011, 35: 558–566 (in Chinese with English abstract)



[31]David W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot, 2002, 53: 773–787



[32]杜红霞, 冯浩, 吴普特, 王百群. 水、氮调控对夏玉米根系特性的影响. 干旱地区农业研究, 2013, 31(1): 89–94



Du H X, Feng H, Wu P T, Wang P Q. Influence of water and N fertilizer regulation on root growth characteristics of summer maize. Agric Res Arid Areas, 2013, 31(1): 89–94 (in Chinese with English abstract)



[33]易建华, 贾志红, 孙在军. 不同根系土壤温度对烤烟生理生态的影响. 中国生态农业学报, 2008, 16: 62–66



Yi J H, Jia Z H, Sun Z J. Physiological and ecological effect of rhizospheric soil temperature on flue-cured tobacco. Chin J Eco-Agric, 2008, 16: 62–66 (in Chinese with English abstract)



[34]苗果园, 高志强, 张云亭, 尹钧, 张爱良. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002, 28: 445–450



Miao G Y, Gao Z Q, Zhang Y T, Yin J, Zhang A L. Effect of water and fertilizer to root system and its correlation with tops in wheat. Acta Agron Sin, 2002, 28: 445–450(in Chinese with English abstract)



[35]吴龙华, 张素君, 刘兰民, 杨跃, 张国忠. 不同土壤类型和肥力玉米地土壤养分根际效应研究. 应用生态学报, 2000, 11: 545–548



Wu L H, Zhang S J, Liu L M, Yang Y, Zhang G Z. Rhizosphere effect of nutrients in different maize soils with different fertility levels. Chin J Appl Ecol, 2000, 11: 545–548 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!