欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1575-1581.doi: 10.3724/SP.J.1006.2015.01575

• 耕作栽培·生理生化 • 上一篇    下一篇

加工过程对小麦及其制品中玉米赤霉烯酮含量的影响

张慧杰,孙丽娟,孙娟,张妍,李为喜,胡学旭,王步军*   

  1. 中国农业科学院作物科学研究所 / 农业部谷物产品质量安全风险评估实验室(北京), 北京 100081
  • 收稿日期:2014-10-29 修回日期:2015-05-04 出版日期:2015-10-12 网络出版日期:2015-06-29
  • 基金资助:

    本研究由2014年国家农产品质量安全风险评估重大专项(GJFP2014006)资助。

Effects of Processing on Zearalenone Concentrations in Wheat and Products Made of Wheat

ZHANG Hui-Jie,SUN Li-Juan,SUN Juan,ZHANG Yan,LI Wei-Xi,HU Xue-Xu,WANG Bu-Jun*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / Laboratory of Quality & Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China
  • Received:2014-10-29 Revised:2015-05-04 Published:2015-10-12 Published online:2015-06-29

摘要:

真菌毒素(mycotoxin)小麦及面制食品重要的安全风险之一。为明确真菌毒素在小麦磨粉及食品加工链条中的变化规律, 解决目前我国尚缺少面粉和面制食品真菌毒素限量标准的问题, 开展小麦真菌毒素污染风险评估, 以受玉米赤霉烯酮(ZEN)污染的小麦为材料, 用超高效液相色谱串联质谱法(UPLC-MS/MS)检测了不同磨粉组分及馒头、面包、面条加工过程中不同环节加工品中ZEN的含量。结果表明, 小麦磨粉后粗麸皮和细麸皮中ZEN的含量显著升高, 达到小麦籽粒的2倍以上, 小麦粉中ZEN的含量平均降低70%以上;小麦粉加工成馒头和面包后, ZEN的含量分别增高1.8倍和1.0, 加工成面条后因ZEN在煮制过程中部分溶于水中而降低30%以上。研究结果表明, 加工过程对小麦及面制食品中的毒素水平有显著影响, 对小麦、面粉及不同的小麦制品分别制定ZEN限量更为科学合理。

关键词: 小麦, 磨粉, 馒头面包, 面条, 玉米赤霉烯酮

Abstract:

Mycotoxin is one of the risky factors in safeties of wheat and the food made of wheat. The objective of this study was to investigate changes of mycotoxin in the processing chain of wheat milling and wheat end-use products, and to assess the risk of mycotoxin-contaminated grain as edibles. The zearalenone (ZEN) levels were tested in different milling fractions of ZEN-contaminated wheat grain and its end-use products (bread, noodle, and Chinese steamed bread) at different processing stages using UPLC-MS/MS method. The results showed that, ZEN concentrations in bran and shorts significantly increased, which were two times more than these in wheat grain, and ZEN concentration in flour decreased averagely by more than 70% as compared with that in wheat grain. When ZEN-stained flour was processed into bread and Chinese steamed bread, ZEN concentration increased by 1.0 and 1.8 times, respectively. However, ZEN concentration in cooked noodle reduced at least 30% during cooking because of the leaching in water. These results indicate that processing has a significant effect on mycotoxin level in wheat flour and its end-use products and diverse standards for ZEN limits in food are required to be established for different products made of wheat.

Key words: Wheat, Milling, Chinese steamed bread, Bread, Noodle, Zearalenone

[1]陈丽星. 真菌毒素研究进展. 河北工业科技, 2006, 23(20): 124–126



Chen L X. Mycotoxins and their research progress. Hebei J Ind Sci Technol, 2006, 23(20): 124–126 (in Chinese with English abstract)



[2]白小芳. 真菌毒素在食品加工过程中的变化规律. 农产品加工, 2010, (8): 68–74



Bai X F. Change regularity of mycotoxins be used in food processing. Farm Prod Processing, 2010, (8): 68–74 (in Chinese with English abstract)



[3]Visconti A, De-Girolamo A. Fusarium mycotoxins in cereals: storage, processing and decontamination. In: Scholten O E,  Ruckenbauer P, Visconti A, Osenburggen W A, den Nijs A P M. eds. Food Safety of Cereals: A Chain-Wide Approach to Reduce Fusarium mycotoxins. European Commission, Brussels, 2002. pp 29–40



[4]González-Osnaya L, Soriano J M, Moltó J C, Mañes J. Dietary intake of ochratoxin A from conventional and organic bread. Int J Food Microbiol, 2007, 118: 87–91



[5]Park D L. Effect of processing on aflatoxin. Adv Exp Med Biol, 2002, 504: 173–179



[6]Abbas H K, Mirocha C J, Pawlosky R J, Pusch D J. Effect of cleaning, milling, and baking on deoxynivalenol in wheat. Appl Environ Microb, 1985, 50: 482–486



[7]Brera C, Debegnach F, Grossi S, Miraglia M. Effect of industrial processing on the distribution of fumonisin B1 in dry milling corn fractions. J Food Prot, 2004, 67: 1261–1266



[8]Scudamore K A, Banks J, MacDonald S J. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production. Food Addit Contam, 2003, 20: 1153–1163



[9]El-Banna A A, Scott P M. Fate of mycotoxins during processing of foodstuffs: I. Aflatoxin Bl during making of Egyptian bread. J Food Prot, 1983, 46: 301–304



[10]Samar M, Resnik S L, González H H L, Pacin A M, Castillo M D. Deoxynivalenol reduction during the frying process of turnover pie covers. Food Control, 2007, 18: 1295–1299



[11]孙娟, 李为喜, 张妍, 孙丽娟, 董晓丽, 胡学旭, 王步军. 用超高效液相色谱串联质谱法同时测定谷物中12种真菌毒素. 作物学报, 2014, 40: 691–701



Sun J, Li W X, Zhang Y, Sun L J, Dong X L, Hu X X, Wang B J. Simultaneous determination of twelve mycotoxins in cereals by ultra-high performance liquid chromatography-tandem mass spectrometry. Acta Agron Sin, 2014, 40: 691–701 (in Chinese with English abstract)



[12]Brera C, Catano C, de Santis B, Debegnach F, de Giacomo M, Pannunzi E, Miraglia M. Effects of industrial processing on the distribution of aflatoxins and zearalenone in corn-milling fractions. J Agric Food Chem, 2006, 54: 5014–5019



[13]Castells M, Marin S, Sanchis V, Ramos A J. Distribution of fumonisins and aflatoxins in corn fractions during industrial corn flakes processing. Int J Food Microbiol, 2008, 123: 81–87



[14]Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J. Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci, 2007, 46: 327–347



[15]Dexter J E, Clear R M, Preston K R. Fusarium head blight: effect on the milling and baking of some Canadian wheats. Cereal Chem, 1996, 73: 695–701



[16]Lee U S, Jang H S, Tanaka T, Oh Y J, Cho C M, Ueno Y. Effect of milling on decontamination of Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone in Korean wheat. J Agric Food Chem, 1987, 35: 126–129



[17]Trigo-Stockli D M, Deyoe C W, Satumbaga R F. Pedersen J R. Distribution of deoxynivalenol and zearalenone in milled fractions of wheat. Cereal Chem, 1996, 73: 388–391



[18]Lancova K, Hajslova J, Kostelanska M, Kohoutkova J, Nedelnik J, Moravcova H, Vanova M. Fate of trichothecene mycotoxins during the processing: milling and baking. Food Addit Contam, 2008, 25: 650–659



[19]Zhang H J, Wang B J. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during wheat milling and Chinese steamed bread processing. Food Control, 2014, 44: 86−91



[20]Castelo M M, Katta S K, Sumner S S, Hanna M A, Bullerman L B. Extrusion cooking reduces recoverability of fumonisin B1 from extruded corn grits. J Food Sci, 1998, 63: 696–698



[21]Castelo M M, Sumner S S, Bullerman L B. Stability of fumonisins in thermally processed corn products. J Food Prot, 1998, 61: 1030–1033



[22]Katta S K, Jackson L S, Sumner S S, Hanna M A, Bullerman L B. Effect of temperature and screw speed on stability of fumonisin B1 in extrusion-cooked corn grits. Cereal Chem, 1999, 76: 16−20



[23]Osborne B G. Reverse phase high performance liquid chromatography determination of ochratoxin A in flour and bakery products. J Sci Food Agric, 1979, 30: 1065–1070



[24]Osborne B G, Ibe F, Brown G L, Petagine F, Scudamore K A, Banks J N, Hetmanski M T, Leonard C T. The effects of milling and processing on wheat contaminated with ochratoxin A. Food Addit Contam, 1996, 13: 141–153



[25]Ncira M S, Patina A M, Martinez E J, Moltb G, Resnik S L. The effects of bakery processing on natural deoxynivalenol contamination. Int J Food Microbiol, 1997, 37: 21–25



[26]Scott P M, Kanhere S R, Dexter J E, Brennan P W, Trenholm H L. Distribution of DON during the milling of naturally contaminated hard red spring wheat and its fate in baked products. Food Addit Contam, 1984, 1: 313–323



[27]Simsek S, Burgess K, Whitney K L, Gu Y, Qian S Y. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control, 2012, 26: 287–292



[28]于钏钏, 于红霞, 李风琴. 隐蔽型脱氧雪腐镰刀菌烯醇的形成、转化与检测研究进展. 卫生研究, 2009, 38(2): 241−243



Yu C C, Yu H X, Li F Q. Study advance on formation, transformation and detection of masked deoxynivalenol. J Hygiene Res, 2009, 38(2): 241−243 (in Chinese with English abstract)



[29]Zhang H J, Wang B J. Fates of deoxynivalenol and deoxynivalenol-3-glucoside during bread and noodle processing. Food Control, 2015, 50: 754−757



[30]Berthiller F, Dall'asta C, Corradini R, Marchelli R, Sulyok M, Krska R, Adam G, Schuhmacher R. Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food Addit Contam, 2009, 26: 507–511



[31]Engelhardt G, Zill G, Wohner B, Wallnöfer P R. Transformation of the Fusarium mycotoxin zearalenone in maize cell suspension cultures. Naturwissenschaften, 1988, 75: 309–310



[32]Sewald N, Von Gleissenthall J L, Schuster M, Müller G, Aplin R T. Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron: Asymmetry, 1992, 3: 953–960



[33]El-Sharkawy S H, Selim M I, Afifi M S, Halaweish F T. Microbial transformation of zearalenone to a zearalenone sulfate. Appl Environ Microb, 1991, 57: 549–552



[34]Plasencia J, Mirocha C J. Isolation and characterization of zearalenone sulfate produced by Fusarium spp. Appl Environ Microb, 1991, 57: 146–150



[35]Berthiller F, Werner U, Sulyok M, Krska R, Hauser M T, Schuhmacher R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit Contam, 2006, 23: 1194–1200



[36]Samar M M, Neira M S, Resnik S L, Pacin A. Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argentinean bread processing technology. Food Addit Contam, 2001, 18: 1004–1010



[37]Berthiller F, Schuhmacher R, Adam G, Krska R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal Bioanal Chem, 2009, 395: 1243–1252



[38]Pinson-Gadais L, Barreau C, Chaurand M, Gregoire S, Monmarson M, Richard-Forget F. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Addit Contam, 2007, 24: 53–62



[39]Visconti A, Hidukowski E M, Pascale E, Silvestri M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol Lett, 2004, 153: 181−189



[40]Sugita-Konishi Y, Park B J, Kobayashi-Hattori K, Tanaka T, Chonan T, Yoshikawa K, Kumagai S. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Biosci Biotech Bioch, 2006, 70: 1764–1768



[41]Nowicki T W, Gaba D G, Dexter J E, Matsuo R R, Clear R M. Retention of the Fusarium mycotoxin deoxynivalenol in wheat during processing and cooking of spaghetti and noodles. J Cereal Sci, 1988, 8: 189–202



[42]Young J C, Fulcher R G, Hayhoe J H, Scott P M, Dexter J E. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. J Agric Food Chem, 1984, 32: 659–664

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!