作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1575-1581.doi: 10.3724/SP.J.1006.2015.01575
张慧杰,孙丽娟,孙娟,张妍,李为喜,胡学旭,王步军*
ZHANG Hui-Jie,SUN Li-Juan,SUN Juan,ZHANG Yan,LI Wei-Xi,HU Xue-Xu,WANG Bu-Jun*
摘要:
真菌毒素(mycotoxin)是小麦及面制食品重要的安全风险之一。为明确真菌毒素在小麦磨粉及食品加工链条中的变化规律, 解决目前我国尚缺少面粉和面制食品真菌毒素限量标准的问题, 开展小麦真菌毒素污染风险评估, 以受玉米赤霉烯酮(ZEN)污染的小麦为材料, 用超高效液相色谱串联质谱法(UPLC-MS/MS)检测了不同磨粉组分及馒头、面包、面条加工过程中不同环节加工品中ZEN的含量。结果表明, 小麦磨粉后粗麸皮和细麸皮中ZEN的含量显著升高, 达到小麦籽粒的2倍以上, 小麦粉中ZEN的含量平均降低70%以上;小麦粉加工成馒头和面包后, ZEN的含量分别增高1.8倍和1.0倍, 加工成面条后因ZEN在煮制过程中部分溶于水中而降低30%以上。研究结果表明, 加工过程对小麦及面制食品中的毒素水平有显著影响, 对小麦、面粉及不同的小麦制品分别制定ZEN限量更为科学合理。
[1]陈丽星. 真菌毒素研究进展. 河北工业科技, 2006, 23(20): 124–126Chen L X. Mycotoxins and their research progress. Hebei J Ind Sci Technol, 2006, 23(20): 124–126 (in Chinese with English abstract)[2]白小芳. 真菌毒素在食品加工过程中的变化规律. 农产品加工, 2010, (8): 68–74Bai X F. Change regularity of mycotoxins be used in food processing. Farm Prod Processing, 2010, (8): 68–74 (in Chinese with English abstract)[3]Visconti A, De-Girolamo A. Fusarium mycotoxins in cereals: storage, processing and decontamination. In: Scholten O E, Ruckenbauer P, Visconti A, Osenburggen W A, den Nijs A P M. eds. Food Safety of Cereals: A Chain-Wide Approach to Reduce Fusarium mycotoxins. European Commission, Brussels, 2002. pp 29–40[4]González-Osnaya L, Soriano J M, Moltó J C, Mañes J. Dietary intake of ochratoxin A from conventional and organic bread. Int J Food Microbiol, 2007, 118: 87–91[5]Park D L. Effect of processing on aflatoxin. Adv Exp Med Biol, 2002, 504: 173–179[6]Abbas H K, Mirocha C J, Pawlosky R J, Pusch D J. Effect of cleaning, milling, and baking on deoxynivalenol in wheat. Appl Environ Microb, 1985, 50: 482–486[7]Brera C, Debegnach F, Grossi S, Miraglia M. Effect of industrial processing on the distribution of fumonisin B1 in dry milling corn fractions. J Food Prot, 2004, 67: 1261–1266[8]Scudamore K A, Banks J, MacDonald S J. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production. Food Addit Contam, 2003, 20: 1153–1163[9]El-Banna A A, Scott P M. Fate of mycotoxins during processing of foodstuffs: I. Aflatoxin Bl during making of Egyptian bread. J Food Prot, 1983, 46: 301–304[10]Samar M, Resnik S L, González H H L, Pacin A M, Castillo M D. Deoxynivalenol reduction during the frying process of turnover pie covers. Food Control, 2007, 18: 1295–1299[11]孙娟, 李为喜, 张妍, 孙丽娟, 董晓丽, 胡学旭, 王步军. 用超高效液相色谱串联质谱法同时测定谷物中12种真菌毒素. 作物学报, 2014, 40: 691–701Sun J, Li W X, Zhang Y, Sun L J, Dong X L, Hu X X, Wang B J. Simultaneous determination of twelve mycotoxins in cereals by ultra-high performance liquid chromatography-tandem mass spectrometry. Acta Agron Sin, 2014, 40: 691–701 (in Chinese with English abstract)[12]Brera C, Catano C, de Santis B, Debegnach F, de Giacomo M, Pannunzi E, Miraglia M. Effects of industrial processing on the distribution of aflatoxins and zearalenone in corn-milling fractions. J Agric Food Chem, 2006, 54: 5014–5019[13]Castells M, Marin S, Sanchis V, Ramos A J. Distribution of fumonisins and aflatoxins in corn fractions during industrial corn flakes processing. Int J Food Microbiol, 2008, 123: 81–87[14]Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J. Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci, 2007, 46: 327–347[15]Dexter J E, Clear R M, Preston K R. Fusarium head blight: effect on the milling and baking of some Canadian wheats. Cereal Chem, 1996, 73: 695–701[16]Lee U S, Jang H S, Tanaka T, Oh Y J, Cho C M, Ueno Y. Effect of milling on decontamination of Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone in Korean wheat. J Agric Food Chem, 1987, 35: 126–129[17]Trigo-Stockli D M, Deyoe C W, Satumbaga R F. Pedersen J R. Distribution of deoxynivalenol and zearalenone in milled fractions of wheat. Cereal Chem, 1996, 73: 388–391[18]Lancova K, Hajslova J, Kostelanska M, Kohoutkova J, Nedelnik J, Moravcova H, Vanova M. Fate of trichothecene mycotoxins during the processing: milling and baking. Food Addit Contam, 2008, 25: 650–659[19]Zhang H J, Wang B J. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during wheat milling and Chinese steamed bread processing. Food Control, 2014, 44: 86−91[20]Castelo M M, Katta S K, Sumner S S, Hanna M A, Bullerman L B. Extrusion cooking reduces recoverability of fumonisin B1 from extruded corn grits. J Food Sci, 1998, 63: 696–698[21]Castelo M M, Sumner S S, Bullerman L B. Stability of fumonisins in thermally processed corn products. J Food Prot, 1998, 61: 1030–1033[22]Katta S K, Jackson L S, Sumner S S, Hanna M A, Bullerman L B. Effect of temperature and screw speed on stability of fumonisin B1 in extrusion-cooked corn grits. Cereal Chem, 1999, 76: 16−20[23]Osborne B G. Reverse phase high performance liquid chromatography determination of ochratoxin A in flour and bakery products. J Sci Food Agric, 1979, 30: 1065–1070[24]Osborne B G, Ibe F, Brown G L, Petagine F, Scudamore K A, Banks J N, Hetmanski M T, Leonard C T. The effects of milling and processing on wheat contaminated with ochratoxin A. Food Addit Contam, 1996, 13: 141–153[25]Ncira M S, Patina A M, Martinez E J, Moltb G, Resnik S L. The effects of bakery processing on natural deoxynivalenol contamination. Int J Food Microbiol, 1997, 37: 21–25[26]Scott P M, Kanhere S R, Dexter J E, Brennan P W, Trenholm H L. Distribution of DON during the milling of naturally contaminated hard red spring wheat and its fate in baked products. Food Addit Contam, 1984, 1: 313–323 [27]Simsek S, Burgess K, Whitney K L, Gu Y, Qian S Y. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control, 2012, 26: 287–292[28]于钏钏, 于红霞, 李风琴. 隐蔽型脱氧雪腐镰刀菌烯醇的形成、转化与检测研究进展. 卫生研究, 2009, 38(2): 241−243Yu C C, Yu H X, Li F Q. Study advance on formation, transformation and detection of masked deoxynivalenol. J Hygiene Res, 2009, 38(2): 241−243 (in Chinese with English abstract)[29]Zhang H J, Wang B J. Fates of deoxynivalenol and deoxynivalenol-3-glucoside during bread and noodle processing. Food Control, 2015, 50: 754−757[30]Berthiller F, Dall'asta C, Corradini R, Marchelli R, Sulyok M, Krska R, Adam G, Schuhmacher R. Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food Addit Contam, 2009, 26: 507–511[31]Engelhardt G, Zill G, Wohner B, Wallnöfer P R. Transformation of the Fusarium mycotoxin zearalenone in maize cell suspension cultures. Naturwissenschaften, 1988, 75: 309–310[32]Sewald N, Von Gleissenthall J L, Schuster M, Müller G, Aplin R T. Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron: Asymmetry, 1992, 3: 953–960[33]El-Sharkawy S H, Selim M I, Afifi M S, Halaweish F T. Microbial transformation of zearalenone to a zearalenone sulfate. Appl Environ Microb, 1991, 57: 549–552[34]Plasencia J, Mirocha C J. Isolation and characterization of zearalenone sulfate produced by Fusarium spp. Appl Environ Microb, 1991, 57: 146–150[35]Berthiller F, Werner U, Sulyok M, Krska R, Hauser M T, Schuhmacher R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit Contam, 2006, 23: 1194–1200[36]Samar M M, Neira M S, Resnik S L, Pacin A. Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argentinean bread processing technology. Food Addit Contam, 2001, 18: 1004–1010[37]Berthiller F, Schuhmacher R, Adam G, Krska R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal Bioanal Chem, 2009, 395: 1243–1252[38]Pinson-Gadais L, Barreau C, Chaurand M, Gregoire S, Monmarson M, Richard-Forget F. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Addit Contam, 2007, 24: 53–62[39]Visconti A, Hidukowski E M, Pascale E, Silvestri M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol Lett, 2004, 153: 181−189[40]Sugita-Konishi Y, Park B J, Kobayashi-Hattori K, Tanaka T, Chonan T, Yoshikawa K, Kumagai S. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Biosci Biotech Bioch, 2006, 70: 1764–1768 [41]Nowicki T W, Gaba D G, Dexter J E, Matsuo R R, Clear R M. Retention of the Fusarium mycotoxin deoxynivalenol in wheat during processing and cooking of spaghetti and noodles. J Cereal Sci, 1988, 8: 189–202[42]Young J C, Fulcher R G, Hayhoe J H, Scott P M, Dexter J E. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. J Agric Food Chem, 1984, 32: 659–664 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|