欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1880-1887.doi: 10.3724/SP.J.1006.2015.01880

• 耕作栽培·生理生化 • 上一篇    下一篇

膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献

占东霞,张超,张亚黎,罗宏海,勾玲,张旺锋*   

  1. 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子832000
  • 收稿日期:2015-04-21 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-12
  • 通讯作者: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326
  • 基金资助:

    本研究由国家自然科学基金项目(U1203283)和新疆生产建设兵团博士基金项目(2013BB002)资助。

Photosynthetic Characteristics after Flowering and Contribution of Non-leaf Green Organs of Cotton to Yield under Mulching-drip Irrigation with Water Deficiency

ZHAN Dong-Xia,ZHANG Chao,ZHANG Ya-Li,LUO Hong-Hai,GOU Ling,ZHANG Wang-Feng*   

  1. Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Group / Agriculture College, Shihezi University, Shihezi 832003, China
  • Received:2015-04-21 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-12
  • Contact: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (U1203283) and the Doctoral Foundation Program of Xinjiang Production and Construction Corps (2013BB002).

摘要:

选用北疆棉区主栽品种新陆早33号和新陆早45号,设置常规滴灌量(CI)、轻度水分亏缺滴灌量(SDI)、中度水分亏缺滴灌量(MDI) 3种处理,在田间条件下研究了不同滴灌量对棉花叶片和非叶绿色器官叶绿素(Chl)含量、净光合速率(Pn)、气孔导度(Gs)和光合物质累积的影响,明确了水分亏缺下棉株非叶绿色器官光合作用对产量的贡献。结果表明,各滴灌量条件下棉花非叶绿色器官单位面积的PnChl含量下降幅度较叶片小,且随棉花生育进程的变化较小。在棉铃生长发育后期,随滴灌量减少,棉花非叶绿色器官光合物质生产能力对产量起着更为重要的作用。中度水分亏缺条件下,棉铃(铃壳和苞叶)和茎秆光合作用对铃重的相对贡献率分别增加至16.8%~34.9%7.6%~17.5%。因此,采用膜下滴灌植棉技术时适当控制滴水量,在保证叶片具有较高光合速率的同时,发挥棉花非叶绿色器官的光合抗逆能力,对挖掘滴灌棉花节水增产潜力具有重要意义。

关键词: 棉花, 非叶绿色器官, 光合能力, 相对贡献率, 水分亏缺

Abstract:

Leaf is one of the main photosynthetic organs, while other green parts of plant also retain or develop chlorophyll and have photosynthesis. To better understand the whole plant photosynthesis production potential and contribution to cotton yield, we selected Xinluzao 33 and Xinluzao 45 (two common cultivars in Northern Xinjiang) with three irrigation treatments (CI, conventional irrigation; SDI, slight deficit irrigation; MDI, moderate deficit irrigation) to measure the chlorophyll content (Chl), net photosynthetic rate (Pn), stomatal conductance (Gs) and photosynthate accumulation in leaf and non-leaf green organs during different growth stages and the contribution of non-leaf green organs to yield. The results showed that the Pn and Chl in non-leaf organs were relatively insensitive to soil moisture stress, decreasing by only a small amount between 25 and 45 days after anthesis. With reduction of water supply, the dry matter production in non-leaf green organs played more important roles in cotton yield formation. Cotton boll weight in the moderate deficit irrigation treatment decreased by 16.8% to 34.9% when the bolls (capsule walls plus bracts) were shaded and by 7.6% to 17.5% when the stalks were shaded. Hence, limiting-irrigation treatment is important to maintain high leaf photosynthetic rates. It is also important to develop the potential photosynthetic capacity of non-leaf green organs. This is especially important when leaf photosynthesis capacity declines due to leaf aging or water stress.

Key words: Cotton, Non-leaf green organ, Photosynthesis, Relative contribution, Water deficiency

[1]Araus J L, Brown H R, Febrero A, Bort J, Serret M D. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ, 1993, 16: 383–392



[2]Aschan G, Pfanz H. Non-foliar photosynthesis-a strategy of additional carbon acquisition. Flora, 2003, 198: 81–97



[3]Zhang Y P, Zhang Y H, Wang Z M, Wang Z J. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res, 2011, 123: 187–195



[4]Hu Y Y, Zhang Y L, Luo H H, Li W, Oguchi R, Fan D Y, Chow W S, Zhang W F. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235: 325–336



[5]Evans L T, Rawson H M. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Aust J Biol Sci, 1970, 23: 245–254



[6]Ram H, Singh R. Chlorophyll content, photosynthetic rates and related enzyme activities in ear parts of two wheat cultivars differing in grain yield. Plant Physiol Biochem, 1982, 9: 94–102



[7]Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica, 2001, 39: 239–244



[8]Salvador R J, Pearce R B. Husk removal and its effects on maize grain yield. Crop Sci, 1988, 28: 961–964



[9]Imaizumi N, Usuda H, Nakamoto H, Ishihara K. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell Physiol, 1990, 31: 835–843



[10]Ishihara K, Kiyota E, Imaizumi N. On the contribution of panicle photosynthesis to grain yield in rice plants. Jpn J Crop Sci, 1991, 60: 122–123



[11]Crookston R K, O'Toole J, Ozbun J L. Characterization of the bean pod as a photosynthetic organ. Crop Sci, 1974, 14: 708–712



[12]Xu H L, Ishii R. Wheat cultivar differences in photosynthetic response to low soil water potentials: 1. Maintenance of photosynthesis and leaf water potential. Jpn J Crop Sci, 1996, 65: 509–517



[13]Martinez D E, Luquez V M, Bartoli C G, Guizmét J J. Persistence of photosynthetic components and photochemical effect in ears of water-stressed wheat (Triticum aestivum). Physiol Plant, 2003, 119: 519–525



[14]Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress water relations and photosynthesis metabolism. Planta, 2005, 221: 446–458



[15]Tambussi E A, Bort J, Guiamet J J, Nogues S, Araus J L. The photosynthetic role of ears in C3 cereals: metabolism, water use ef?ciency and contribution to grain yield. Plant Sci, 2007, 26: 1–16



[16]Zhang Y P, Zhang Y H, Wang Z M, Wang Z J. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res, 2011, 123: 187–195



[17]Bort J, Febrero A, Amaro T, Araus J L. Role of awns in ear water-use ef?ciency and grain weight in barley. Agronomie, 1994, 2: 133–139



[18]Abbad H, Jaafrai S E, Bort J, Araus J L. Comparison of flag leaf and ear photosynthesis with biomass and grain yield of durum wheat under various water conditions and genotypes. Agronomie, 2004, 24: 19–28



[19]魏爱丽, 王志敏, 陈斌, 翟志席, 张英华. 土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响. 作物学报, 2004, 30: 487–490



Wei A L, Wang Z M, Chen B, Zhai Z X, Zhang Y H. Effect of soil drought on electron transport rate and photophosphorylation level of different green organs in wheat. Acta Agron Sin, 2004, 30: 487–490 (in Chinese with English abstract)



[20]王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24: 136–139



Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops, 2004, 24: 136–139 (in Chinese with English abstract)



[21]Wullschleger S D, Oosterhuis D M. Photosynthetic and respiratory activity of fruiting forms within the cotton canopy. Plant Physiol, 1990, 94: 463–469



[22]Brown K J. Translocation of carbohydrates in cotton: movement to the fruiting bodies. Ann Bot, 1968, 32: 703–713



[23]Bondada B R, Oosterhuis D M. Comparative epidermal ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Ann Bot, 2000, 86: 1143–1152



[24]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382



[25]Elmore C D. Contributions of the capsule wall and bracts to the developing cotton fruit. Crop Sci, 1973, 13: 751–752



[26]Chapin F S. The mineral nutrition of wild plants. Annu Rev Ecol Syst, 1980,11: 233–260



[27]Bondada B R, Oosterhuis D M, Murphy J B, Kim K S. Effect of water stress on the epicuticular wax composition and ultrastructure of cotton leaf, bract, and boll. Environ Exp Bot, 1996, 36: 61–69



[28]Van Iersel M W, Oosterhuis D M. Diurnal water relations of expanding and full-sized cotton fruits and subtending leaves. Plant Cell Environ, 1995, 18: 807–812



[29]Hu Y Y, Zhang Y L, Yi X P, Zhan D X, Luo H H, Chow W S, Zhang W F. The relative contribution of non-foliar organs of cotton to yield and related physiological characteristics under water deficit. J Integr Agric, 2014, 13: 975–989



[30]Poole I, Weyers J D B, Lawson T, Raven J A. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant Cell Environ, 1996, 19: 705–712



[31]Zhan D X, Yang Y, Hu Y Y, Zhang Y L, Luo H H, Zhang W F. Contributions of nonleaf organs to the yield of cotton grown with different water supply. Sci World J, 2014, DOI:10.1155/2014/602747



[32]Hu Y Y, Oguchi R, Yamori W, von Caemmerer S, Chow W S, Zhang W F. Cotton bracts are adapted to a micro-environment of concentrated CO2 produced by rapid fruit respiration. Ann Bot, 2013, 112: 31–40



[33]胡立勇, 单文燕, 王维金. 油菜结实特性与库源关系的研究. 中国油料作物学报, 2002, 24(2): 37–42



Hu L Y, Shan W Y, Wang W J. Characteristics of seed set and source-sink relation of Brassica napus. Chin J Oil Crop Sci, 2002, 24(2): 37–42 (in Chinese with English abstract)



[34]冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250–257



Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250–257 (in Chinese with English abstract)



[35]Mogensen V O, Jensen C R, Mortensen G, Andersen M N, Schjoerring J K, Thage J H, Koribidis J. Pod photosynthesis and drought adaptation of field grown rape (Brassica napus L.). Eur J Agron, 1997, 6: 295–307



[36]杜明伟, 冯国艺, 姚炎帝, 罗宏海, 张亚黎, 夏东利, 张旺锋. 杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系. 作物学报, 2009, 35: 1068–1077



Du M W, Feng G Y, Yao Y D, Luo H H, Zhang Y L, Xia D L, Zhang W F. Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza AI and Shiza 2. Acta Agron Sin, 2009, 35: 1068–1077 (in Chinese with English abstract)



[37]Biscoe P V, Scott R K, Monteith J L. Barley and its environment: III. Carbon budget of the stand. J Appl Ecol, 1975, 12: 269–270

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!