欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 860-872.doi: 10.3724/SP.J.1006.2016.00860

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系

张伟杨,徐云姬,钱希旸,李银银,王志琴,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心,江苏扬州 225009
  • 收稿日期:2015-09-21 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-28
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271641, 31471438), 中央级科研院所基本科研业务费(农业)专项(201103003, 201203079), 国家科技支撑计划项目(2011BAD16B14, 2012BAD04B08, 2013BAD07B09, 2014AA10AS605), 江苏省农业三新工程项目(SXG2014313), 江苏高校优势学科建设工程专项资助。

Free Polyamines in Grains in Response to Soil Drought and Their Relationship with Grain Filling of Wheat

ZHANG Wei-Yang,XU Yun-Ji,QIAN Xi-Yang,LI Yin-Yin,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-innovation Center of Modern Production Technology for Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2015-09-21 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-28
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271641, 31471438), China National Public Welfare Industry (Agriculture) Plan (201103003, 201203079), the National Key Technologies R&D Program of China (2011BAD16B14, 2012BAD04B08, 2013BAD07B09, 2014AA10AS605), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要:

为探明干旱胁迫下小麦内源游离多胺在籽粒灌浆过程中的作用,2013—2014和2014—2015年度选用高产品种扬麦16和宁麦13进行不同水分条件的盆栽试验。自分蘖末期至成熟期设置正常供水(WW)、土壤轻度干旱(MD)和土壤重度干旱(SD) 3种处理,观察不同土壤水分对籽粒中游离多胺和籽粒灌浆的影响。两个品种的结果一致表明,与WW相比,MD处理对叶片水势及光合作用没有显著影响,显著增加弱势粒灌浆速率(12.5%)和粒重(11.8%),对强势粒灌浆无显著影响;SD处理则严重抑制叶片光合作用,显著降低叶片水势,强势粒的灌浆速率和粒重分别下降10.1%和9.5%,弱势粒的灌浆速率和粒重分别下降14.5%和11.7%。MD处理显著提高了灌浆期弱势粒中游离亚精胺(Spd)和精胺(Spm)含量及其与腐胺(Put)的比值,而SD处理的结果则相反。籽粒灌浆速率、粒重与籽粒中Spd和Spm含量及Spd/Put和Spm/Put值呈极显著正相关,与Put含量呈极显著负相关。喷施Spd和Spm,显著增加3个处理弱势粒及SD处理强势粒的灌浆速率(11.2%~25.9%)和粒重(9.9%~17.7%),但对WW和MD处理的强势粒无显著影响;喷施Spd和Spm合成抑制剂[甲基乙二醛-双脒基腙(MGBG)]后,3个处理强、弱势粒的灌浆速率和粒重均显著降低,分别下降20.5%~28.8%和16.9%~28.5%。表明小麦籽粒中多胺对土壤水分的响应因土壤干旱程度而异,通过轻度土壤干旱处理增加籽粒中Spd和Spm含量以及Spd/Put和Spm/Put值,可以促进籽粒灌浆,增加粒重。

关键词: 小麦, 土壤干旱, 多胺, 籽粒灌浆, 粒重

Abstract:

For understanding the role of endogenous free polyamines on grain filling of wheat under drought stress, we conducted a two-year pot experiment from September 2013 to June 2015 using high-yield wheat cultivars Yangmai 16 and Ningmai 13 grown in different soil moisture conditions. Three treatments, namely well-watered (WW), moderate soil-drought (MD), and severe soil-drought (SD), were imposed from late-tillering to maturity stage. Grain filling rate and free polyamines levels in both superior and inferior grains were determined. The results showed the consistency between the two cultivars. Compared with WW, MD treatment had significantly increased grain-filling rate and grain weight in inferior grains by 12.5% and 11.8%, respectively; whereas no effect on grain filling in superior grains. In contrast, SD treatment showed negative influences on leaf water potential, photosynthetic rate, and grain filling. Under SD treatment, grain-filling rate and grain weight of superior grains reduced by 10.1% and 9.5% and those of inferior grains reduced by 14.5% and 11.7%, respectively. During grain filling, concentrations of free spermidine (Spd) and spermine (Spm) as well as their ratios to putrescine (Put) in inferior grains increased significantly under MD treatment and decreased significantly under SD treatment. Grain-filling rate and grain weight were positively correlated with concentrations of Spd and Spm, and the ratios of Spd/Put and Spm/Put (P < 0.01), whereas negatively correlated with Put concentration (P < 0.01). Exogenous Spd or Spm resulted in significant increases of grain-filling rate (11.2–25.9%) and grain weight (9.9–17.7%) in inferior grains under the three soil moistures and in superior grains under SD treatment, and had no significant difference in superior grains between WW and MD treatments. The positive effects of exogenous Spd and Spm were eliminated when their synthesis inhibitor, methylglyoxal-bis guanylhydrazone (MGBG), was applied together with Spd and Spm. Both superior and inferior grains showed great decreases of grain-filling rate (20.5–28.8%) and grain weight (16.9–28.5%) after spraying MGBG under the three soil moistures. These results indicate that the responses of polyamines in grain to soil moisture vary with drought strength, and moderate drought stress has a positive effect on grain filling through increasing concentrations of Spd and Spm and the ratios of Spd/Put and Spm/Put in grains.

Key words: Wheat, Soil drought, Polyamines, Grain filling, Grain weight

[1] Yang W B, Yin Y P, Li, Cai T, Ni Y L, Peng D L, Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189–201
[2] Shao H B, Chu L Y, Jaleel C A, Manivannan P, Panneerselvam R, Shao M A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Crit Rev Biotechnol, 2009, 29: 131–151
[3] Kobata T, Palta J A, Turner T C. Rate of development of post anthesis water deficits and grain filling of spring wheat. Crop Sci, 1992, 32: 1238–1242
[4] 杨桂霞, 赵广才, 许轲, 常旭虹, 杨玉双, 马少康. 灌水及化控对不同粒色小麦籽粒灌浆及叶绿素含量的影响. 华北农学报, 2010, 25: 152–157
Yang G X , Zhao G C , Xu K, Chang X H, Yang Y S, Ma S K. Effect of irrigation and chemical control on grain filling and chlorophyll content in wheat with different grain colors. Acta Agric Boreali-Sin, 2010, 25: 152–157 (in Chinese with English abstract)
[5] Yang J C, Zhang J H, Ye Y X, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ, 2004, 27: 1055–1064
[6] Yang J C, Zhang J H Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to remobilization of prestored carbon in wheat during grain filling. Agron J, 2001, 93: 196–206
[7] Yang J C, Zhang J C. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223–236
[8] 王维, 张建华, 杨建昌,朱庆森.适度土壤干旱对贪青小麦茎鞘贮藏性糖运转及籽粒充实的影响. 作物学报, 2004, 30: 1019–1025 
Wang W, Zhang J H, Yang J C, Zhu Q S. Effects of controlled soil drought on remobilization of stem-stored carbohydrate and grain filling of wheat with unfavorably-delayed senescence. Acta Agron Sin, 2004, 30: 1019–1025 (in Chinese with English abstract)
[9] 吕丽华, 胡玉昆, 李雁鸣, 王璞. 灌水方式对不同小麦品种水分利用效率和产量的影响. 麦类作物学报. 2007, 27:88–92
   Lü L H, Hu Y K, Li Y M, Wang P. Effect of irrigating treatments on water use efficiency and yield of different wheat cultivars. J Triticeae Crops, 2007, 27: 88–92 (in Chinese with English abstract)
[10] Duan H G, Yuan S, Liu W J, Xi D H, Qing D H, Liang H G, Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol, 2006, 48: 920–927
[11] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol, 2006, 171: 293–303
[12] Liu Y E, Liu P. Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Sci, 2010, 50: 215–221.
[13] Tomosugi M, Ichihara K, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta, 2006, 223: 349–358
[14] Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712–722
[15] Paschalidis K A, Roubelakis - Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs / tissues of the tobacco plant . Correlations with age, cell division/expansion, and differentiation. Plant Physiol, 2005, 138: 142–152
[16] Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio A F, Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett, 2006, 28: 1867–1876
[17] Liu J H, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol, 2007, 24: 117–126
[18] Goyal M, Asthir B. Polyamine catabolism influences anti-oxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul, 2010, 60: 13–25
[19] Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integrative Plant Biol, 2011, 53: 388–398
[20] Yang J C, Cao Y Y, Zhang H, Liu L J, Zhang J H. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137–149
[21] 牛明功, 胡炳义, 张胜, 朱自学, 刘怀攀. 小麦种子脱水过程中多胺水平的变化. 种子, 2006, 25(11): 61–63
Niu M G, Hu B Y, Zhang S, Zhu Z X, Liu H P. Changes of polyamine during dewatering of wheat seed. Seed, 2006, 25(11): 61–63 (in Chinese with English abstract)
[22] Liu H P, Zhu Z X, Liu T X, Li C H. Effect of osmotic stress on the kinds, forms and levels of polyamines in wheat coleoptiles. J Plant Physiol Mol Biol, 2006, 32: 293–299
[23] 刘杨, 温晓霞, 顾丹丹, 郭强, 曾爱, 李长江, 廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制. 作物学报, 2013, 39: 712–719
Liu Y, Wen X X, Gu D D, Gu Q, Zeng A, Li C J, Liao Y C. Effect of polyamine on grain filling of winter wheat and its physiological mechanism. Acta Agron Sin, 2013, 39: 712–719 (in Chinese with English abstract)
[24] 朱庆森, 曹显祖, 骆亦奇. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182–193
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the progress of grain filling in rice. Acta Agron Sin, 1988, 14: 182–193 (in Chinese with English abstract) 
[25] Richards F J. A flexible growth functions for empirical use. J Exp Bot, 1959, 10: 290–300
[26] Flores H E, Galston A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982, 69: 701–706
[27] DiTomaso J M, Shaff J E, Kochian L V. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of interaction seeding. Plant Physiol, 1989, 90: 988–995
[28] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integrative Plant Biol, 2007, 49: 1445–1454
[29] Harsh Pal Bias, G A Ravishankar. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue & Organ Cult, 2002, 69: 1–34
[30] Bueno M, Lendinez M L, Aparicio C, Cordovilla M P. Effect of salinity on polyamines and ethylene in Atriplex prostrate and Plantago coronopus. Biol Plantarum, 2015, 59: 596–600
[31] Rossetto M R M, Vianello F, Saeki M J, Lima G P P. Polyamines in conventional and organic vegetables exposed to exogenous exposed to ethylene. Food Chem, 2015, 188: 218–224
[32] 谈桂露, 张耗, 付景, 王志琴, 刘立军, 杨建昌. 超级稻花后强、弱势粒多胺含量变化及其与籽粒灌浆的关系. 作物学报, 2009, 35: 2225–2233
Tan G L, Zhang H, Fu J, Wang Z Q, Liu L J, Yang J C. Post-anthesis changes in concentrations of ployamines in superior and inferior splikelets and their relation with grain filling of super rice. Acta Agron Sin, 2009, 35: 2225–2233 (in Chinese with English abstract)
[33] Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137–149
[34] 张木清, 陈如凯, 余松烈. 多胺对渗透胁迫下甘蔗愈伤组织诱导和分化的作用. 植物生理学通讯, 1996, 32: 175–178
Zhang M Q, Chen R K, Yu S L. Effect of polyamines on induction and differentiation of calli from leaves of sugarcane under osmotic stress. Plant Physiol Commun, 1996, 32: 175–178 (in Chinese)
[35] 徐仰仓, 王静, 刘华, 王根轩. 外源精胺对小麦幼苗抗氧化酶活性的促进作用. 植物生理学报, 2001, 27: 349–352
Xu Y C, Wang J, Liu H, Wang G X. Promoting effect of exogenous spermine on anti-oxidative enzyme activity in wheat seedlings. Acta Phytophysiol Sin, 2001, 27: 349–352 (in Chinese with English abstract)
[36] 李璟, 胡晓辉, 郭世荣, 王素平, 王鸣华. 外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响. 植物生态学报, 2006, 30: 118–123  
Li J, Hu X H, Guo S R, Wang S P, Wang M H. Effect of exogenous spermidine on polyamine content and antioxidant enzyme activities in roots of cucumber seedlings under root zone hypoxia stress. Chin J Plant Ecol, 2006, 30: 118–123 (in Chinese with English abstract)
[37] Maiale S, Sánchez D H, Guirado A, Vidal A, Ruiz OA. Spermine accumulation under salt stress. J Plant Physiol, 2004, 161: 35–42
[38] Bollmark M, Eliasson L. Ethylene accelerates the breakdown of cytokinin and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol Plant, 1990, 80: 534–540
[39] Yang J C, Zhang Z J, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot-London, 2002, 90: 369–377
[40] Chen T T, Xu Y J, Wang J C, Wang Z Q, Yang J C, Zhang J H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot, 2013, 64: 2523–2538
[41] Bouchereau A, Aziz A, Larher F, Tanguy J M. Polyamines and environmental challenges: recent development. Plant Sci, 1999, 140: 103–125
[42] Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101: 9909–9914
[43] Hummel I, Amrani A E, Gouesbet G, Hennion F, Couée I. Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. J Exp Bot, 2004, 55: 1125–1134
[44] Davies P J. The plant hormones: their nature, occurrence and function. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht: Kluwer Academic Publishers, 2004. pp 1–15
 
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[11] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!