欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 898-908.doi: 10.3724/SP.J.1006.2016.00924

• 耕作栽培·生理生化 • 上一篇    下一篇

机械收获模式下直播冬油菜密度与行距的优化

蒯婕1,孙盈盈1,左青松2,廖庆喜1,冷锁虎2,程雨贵3,曹石1,吴江生1,周广生1,*   

  1. 1 华中农业大学植物科学技术学院,湖北武汉 430070;2 扬州大学江苏省作物遗传生理重点实验室,江苏扬州 225009;3 宜昌市农业科学研究所,湖北宜昌 443004
  • 收稿日期:2015-11-13 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-21
  • 通讯作者: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2014BAD11B03), 国家现代农业产业技术体系建设专项(NYCYTC-00510), 国家公益性行业(农业)科研专项(201203096)和高校自主科技创新基金项目(2013PY001, 2015BQ001)资助。

Optimization of Plant Density and Row Spacing for Mechanical Harvest in Winter Rapeseed (Brassica napus L.)

KUAI Jie1,SUN Ying-Ying1,ZUO Qing-Song2,LIAO Qing-Xi1,LENG Suo-Hu2,CHENG Yu-Gui3,CAO Shi1,WU Jiang-Sheng1,ZHOU Guang-Sheng1,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 3 Agricultural Institute of Yichang City, Yichang 443004, China
  • Received:2015-11-13 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-21
  • Contact: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:

    This study was supported by the National Key Technology R&D Program of China (2014BAD11B03), the China Agriculture Research System (NYCYTC-00510), the Special Fund for Agro-Scientific Research in the Public Interest (201203096), and the Fundamental Research Funds for Central Universities (2013PY001, 2015BQ001).

摘要:

以华油杂62为材料,采用裂区设计,设置密度15万株hm–2 (D1)、30万株hm–2 (D2)、45万株hm–2 (D3)为主区;行距15 cm (R15)、25 cm (R25)、35 cm (R35)为裂区,研究密度及行距变化对油菜群体人工收获产量、叶面积指数(LAI)、角果皮面积指数(PAI)、透光率、抗倒伏、抗裂角性能及机械收获产量的影响,探讨透光率与产量、抗倒性的关系,建立机械化生产模式下油菜密度及行距最优配置。结果表明,密度增加或行距减小,油菜成株率适宜,LAI、PAI值增加,冠层透光率下降,群体生物量及经济系数增加,人工收获产量增加;但单位LAI(PAI)光拦截量、单株生物量及根干重下降,且较低的单位LAI (PAI)光拦截量有利于提高油菜经济系数;密度及行距处理间差异及互作效应显著,与农户习惯种植模式(D2R25)相比,在D3R15处理下可增产14.1%,获得最高人工收获产量。密度或行距增加,地上部鲜重、株高降低及根冠比增加,导致油菜茎秆、根倒角度下降,抗裂角指数增加,机械收获产量变化趋势与人工收获产量一致,与机械收获总损失率相反,表明除通过提高油菜抗倒性和抗裂角性降低机收损失外,较高的人工收获产量是获得较高机械收获产量的前提。由回归方程可知,与常规30万株hm–2密度、25 cm行距配置比,密度43.8万株hm2和行距21 cm配置可使蕾薹期LAI提高21.02%、透光率及单位LAI光拦截量分别下降32.47%与17.36%,角果期PAI增加15.08%、透光率及单位PAI光拦截量分别下降32.04%与3.30%,获得较高的机械收获产量,进一步提高油菜机械化生产效益。

关键词: 油菜, 密度, 行距, 机械收获, 产量

Abstract:

The field experiment was conducted with the cultivar Huayouza 62, which was seeded at 15 (R15), 25 (R15), and 30 (R15) cm in row spacing and 15 (D1), 30 (D2), and 45 (D3) ×104 plants hm–2 indensity. The theoretical yield, leaf area index (LAI), pod area index (PAI), mechanical-harvested yield and yield loss were measured and calculated. Results showed that plant density and row spacing signi?cantly a?ected the seed yield of rapeseed. The yield was increased as the plant density increased or row spacing reduced. Compared with the planting patterns used by farmers (D2R25), D3R15 could achieve 14.1% increase in yield, which was the highest yield among all the treatments because of appropriate mortality, the highest LAI, PAI and the light interception (LI). Population biomass had the similar trend with yield while harvest index (HI) significantly increased with increasing plant density and row spacing. HI was significantly and negatively correlated with LI/ LAI (PAI), indicating that lower LI/ LAI (PAI) was favorable for increasing HI. Plant height and aboveground biomass reduced and root/shoot ratio increased with increasing plant density and row spacing, which led to decrease root and stem lodging. Improvement in resistance to pod shattering was also observed as plant density and row spacing increased. These changes all contributed to mechanical harvesting operations, resulting in reducing yield loss. As the regression equations showed, compared with D2R25, 43.8×104 plants ha1 in combination with 21 cm row spacing was optimum for rapeseed to maximize seed yield and minimize lodging and pod shattering so as to facilitate mechanical harvest. The combination could make the LAI increase by 21.02%, light transmittance (LT) and LI/LAI decreased by 32.47% and 17.36%; PAI increased by 15.08%, LT and LI/PAI decreased by 32.04% and 3.30%.

Key words: Rapeseed, Density, Row spacing, Mechanical harvesting, Yield

[1] 王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29(1): 101–105
Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci, 2007, 29(1): 101–105 (in Chinese with English abstract)
[2] 苏伟, 鲁剑巍, 周广生, 李小坤, 韩自航, 雷海霞, 免耕及直播密度对油菜生长、养分吸收和产量的影响. 中国农业科学, 2011, 44: 1519–1526
Su W, Lu J W, Zhou G S, Li X K, Han Z H, Lei H X. Effect of no-Tillage and direct sowing density on growth, nutrient uptake and yield of rapeseed (Brassica napus L.). Sci Agric Sin, 2011, 44: 1519–1526 (in Chinese with English abstract)
[3] 杨文平, 郭天财, 刘胜波, 王晨阳, 王永华, 马冬云. 行距配置对‘兰考矮早八’小麦后期群体冠层结构及其微环境的影响. 植物生态学报, 2008, 32: 485–490
Yang W P, Guo T C, Liu S B, Wang C Y, Wang Y H, Ma D Y. Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. J Plant Ecol, 2008, 32: 485–490 (in Chinese with English abstract)
[4] 郑亭, 陈溢, 樊高琼, 李金刚, 李朝苏, 荣晓椒, 李国瑞, 杨文钰, 郭翔. 株行配置对带状条播小麦群体光环境及抗倒伏性能的影响. 中国农业科学, 2013, 46: 1571–1582
Zheng T, Chen Y, Fan G Q, Li J G, Li C S, Rong X J, Li G R, Yang W Y, Guo X. Effects of Plant and Row Allocation on Population light environment and lodging resistance of strip sown wheat in drill. Sci Agric Sin, 2013, 46: 1571–1582 (in Chinese with English abstract)
[5] 王俊生, 李少钦, 张耀文, 不同栽培密度对紧凑型油菜产量和主要性状的影响. 耕作与栽培, 2006, (3): 25–26
Wang J S, Li S Q, Zhang Y W. Effects of plant density on yield and main characters of rapeseed. Culture Plant, 2006, (3): 25–26 (in Chinese)
[6] 宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43: 1800–1806
Song X, Liu F L, Zheng P Y, Zhang X K, Lu Y G, Fu G P, Cheng Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting. Sci Agric Sin, 2010, 43: 1800–1806 (in Chinese with English abstract)
[7] 张传胜. 油菜生产机械化配套农艺技术的研究. 中国农机化学报, 2008, (6): 91–94
Zhang C S. Sutdy on suitale cultivating technology for mechanical production of rape. J Chin Agric Mech, 2008, (6): 91–94 (in Chinese)
[8] Leach J E, Stevenson H J, Rainbow A J, Mullen L A. Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus L.). J Agric Sci, 1999, 132: 173–180
[9] 陈新军, 戚存扣, 高建芹,伍贻美. 不同栽培密度对杂交油菜产量的影响. 江苏农业科学, 2001, (1): 29–30
Chen X J, Qi C K, Gao J Q, Wu Y M. The influence of planting density on yield of hybrid rape. Jiangsu Agric Sci, 2001, (1): 29–30 (in Chinese)
[10] 李爱民, 张永泰, 惠飞虎, 周如美,钱善勤,范琦. 适合全程机械化作业的油菜育种新概念. 中国农学通报, 2005, 21(11): 151–153
Li A M, Zhang Y T, Hui F H, Zhou R M, Qian S Q, Fan Q. Certain concepts concerning rapeseed (Brassica napus L.) varieties which suit to whole process mechanization operation. Chin Agric Sci Bull, 2005, 21(11): 151–153 (in Chinese)
[11] 董晓芳, 田保明, 姚永芳, 张艳, 张京涛, 孙弋媛, 刘云霞, 申龙, 苏彦华. 密度对油菜品种机械化收获特性的影响. 中国农学通报, 2012, 28(3): 71–74
Dong X F, Tian B M, Yao Y F, Zhang Y, Zhang J T, Sun Y Y, Liu Y X, Shen L, Su Y H. Effects of the Density on the characteristics of the mechanization harvest in Brassica napus L. Chin Agric Sci Bull, 2012, 28(3): 71–74 (in Chinese)
[12] Stamp P, Kiel C. Root morphology of maize and its relationship to root lodging. J Agron Crop Sci, 1992, 168: 113–118
[13] 马均, 马文波, 田彦华, 杨建昌, 周开达, 朱庆森. 重穗型水稻植株抗倒伏能力的研究. 作物学报, 2004, 30: 143–148
Ma J, Ma W B, Tian Y H, Yang J C, Zhou K D, Zhu Q S. The culm lodging resistance of heavy panicle type of rice. Acta Agron Sin, 2004, 30: 143–148 (in Chinese with English abstract)
[14] 吴洪恺, 纪凤高, 文正怀, 袁彩勇, 韩成虎, 袁生堂. 水稻栽插不同株行距配比方式初探. 耕作与栽培, 2000, (1): 17–18
Wu H K, Ji F G, Wen Z H, Yuan C Y, Han C H, Yuan S T. Appropriate plant and row spacing for rice cultivation. Culture Plant, 2000, (1): 17–18 (in Chinese)
[15] 马卉, 徐红, 殷育峰, 刘学进, 李斌. 机插秧不同株行距配置生产力对比试验简报. 上海农业科技, 2014, (5): 45–46
Ma H, Xu H, Yin Y F, Liu X J, Li B. Contrast test in yield potential for mechanical planting rice under different row spacing. Shanghai Agric Sci Tech, 2014, (5): 45–46 (in Chinese)
[16] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2): 441–450
Wei S S, Wang X Y, Dong S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014, 25(2): 441–450 (in Chinese with English abstract)
[17] 周勋波, 杨国敏, 孙淑娟, 陈雨海. 不同株行距配置对夏大豆群体结构及光截获的影响. 生态学报, 2010, 30: 691–697
Zhou X B, Yang G M, Sun S J, Chen Y H. Effect of different plant-row spacing on population structure and PAR interception in summer soybean. Acta Ecol Sin, 2010, 30: 691–697 (in Chinese with English abstract)
[18] 李猛, 陈现平, 张建, 朱德慧, 程备久. 不同密度与行距配置对紧凑型玉米产量效应的研究. 中国农学通报, 2009, 25(8): 132–136
Li M, Chen X P, Zhang J, Zhu D H, Cheng B J. Study on the Yield of Erectophile Type Maize under the Different Density and the Row Spacing. Chin Agric Sci Bull, 2009, 25(8): 132–136 (in Chinese)
[19] 杨克军, 李明, 李振华, 栽培方式与群体结构对寒地玉米物质积累及产量形成的影响. 中国农学通报, 2005, 21(11): 157–160
Yang K J, Li M, Li Z H. Effect of cultivation way and community construction on material accumulation and yield formation of frigid corn. Chin Agric Sci Bull, 2005, 21(11): 157–160 (in Chinese)
[20] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. p 500
Liu H L. Practical Rapeseed Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. p 500 (in Chinese)
[21] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响. 作物学报, 2015, 41: 938–945
Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S, Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 938–945 (in Chinese with English abstract)
[22] Morgan C L, Bruce D M, Child R, Ladbrookea Z L, Arthura A E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res, 1998, 58: 153–165
[23] 左青松, 黄海东, 曹石, 杨士芬, 廖庆喜, 冷锁虎, 吴江生, 周广生. 不同收获时期对油菜机械收获损失率及籽粒品质的影响. 作物学报, 2014, 40: 650–656
Zuo Q S, Huang H D, Cao S, Yang S F, Liao Q X, Leng S H, Wu J S, Zhou G S. Effects of harvesting date on yield loss percentage of mechanical harvest and seed quality in rapeseed. Acta Agron Sin, 2014, 40: 650–656 (in Chinese with English abstract)
[24] Park S E, Benjamin L R, WatkinsonA R. The theory and application of plant competition models: an agronomic perspective. Ann Bot, 2003, 92: 741–748
[25] Angadi S V, Cutforth H W, Mcconkey B G, Gan Y. Yield adjustment by canola grown at different plant populations under semiarid conditions. Crop Sci, 2003, 43: 1358–1366
[26] Matteraa J, Romeroa L A, Cuatrína A L, Cornagliab P S, Grimoldib A A. Yield components, light interception and radiation use efficiency of lucerne (Medicago sativa L.) in response to row spacing. Eur J Agron, 2013, 45: 87–95
[27] Brar G, Thies W. Contribution of leaves, stem, siliques and seeds to dry matter accumulation in ripening seeds of rapeseed, Brassica napus L. Zeitschrift für Pflanzenphysiologie, 1977, 82: 1–13
[28] Allen E J, Morgan D G. A quantitative analysis of the effects of nitrogen on the growth, development and yield of oilseed rape. J Agric Sci, 1972, 78: 315–324
[29] Seiter S, Altemose C E, Davis M H. Forage soybean yield and quality responses to plant density and row distance. Agron J, 2004, 96: 966–970
[30] Stapper M, Fischer R. Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in southern New South Wales. II. Growth, yield and nitrogen use. Aust J Agric Res, 1990, 41: 1021–1041
[31] Price J S, Hobson R N, Neale M A , Bruce D M. Seed losses in commercial harvesting of oilseed rape. J Agric Eng Res, 1996, 65: 183–191
[32] Rajcan I, Swanton C J. Understanding maize–weed competition: resource competition, light quality and the whole plant. Field Crops Res, 2001, 71: 139–150
[33] Morrison M J, McVetty P B E, Scarth R. Effect of row spacing and seeding rates on summer rape in Southern Manitoba. Can J Plant Sci, 1990, 70: 127–137
[34] Sangoi L, Gracietti M A , Rampazzo C, Bianchetti P, Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res, 2002, 79: 39–51
[35] Kuai J, Yang Y, Sun Y Y, Zhou G S , Zuo Q S, Wu J S, Ling X X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res, 2015, 180: 10–20

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!