作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1429-1436.
单天雷,洪彦涛,杜丽璞,徐惠君,魏学宁,张增艳*
SHAN Tian-Lei,HONG Yan-Tao,DU Li-Pu,XU Hui-Jun,WEI Xue-Ning,ZHANG Zeng-Yan*
摘要:
小麦根腐病是一种难以防治的小麦土传病害。TaMYB86是一个小麦中受根腐病菌诱导表达的MYB编码基因。本文构建了TaMYB86的过表达转基因载体pUbi:MYC-TaMYB86,利用基因枪介导法将其转入推广小麦品种扬麦16。对转TaMYB86基因小麦T0-T3代植株进行分子特征分析和抗病鉴定。PCR检测结果表明,外源TaMYB86已转入3个转基因小麦株系中; qRT-PCR结果显示,TaMYB86在3个转基因小麦株系中的表达量显著高于在未转基因扬麦16中,约为未转基因扬麦16中的5~6倍,表明TaMYB86可在转基因小麦中过量转录; Western杂交结果表明,引入的TaMYB86可在上述3个转基因小麦株系中翻译表达。对转TaMYB86基因小麦与未转基因扬麦16进行根腐病菌接种与抗病鉴定表明,3个转TaMYB86基因小麦株系在T1-T3代的根腐病病情指数分别为31.75、50.00、45.00; 37.75、37.50、38.50; 41.75、31.25、37.50; 在3次鉴定中未转基因扬麦16的根腐病病情指数分别为75.04、54.17、65.38,转TaMYB86基因小麦T1~T3代的根腐病抗性均显著高于未转基因扬麦16 (P < 0.01)。与未转基因扬麦16相比,转TaMYB86基因小麦中3个下游防卫基因(PR10、PR17c和Chit1)的转录水平也显著上调。以上结果说明,TaMYB86过表达可显著增强转基因小麦的根腐病抗性,在小麦防御根腐病过程中起正向调控作用。
[1]Kumar J, Sch?fer P, Heckelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol, 2002, 3(4): 185–195 [2]贾廷祥, 吴桂本, 刘传德. 我国小麦根腐性病害研究现状及防治对策. 中国农业科学, 1995, 28: 41–48 Jia Y X, Wu G B, Liu C D. The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin, 1995, 28: 41–48 (in Chinese with English abstract) [3]Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004, 47: 215–223 [4]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581 [5]Haga N, Kato K, Murase M, Araki S, Kubo M, Demura Tet al.Ito M. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development, 2007, 134: 1101–1110 [6]Zhou J, Lee C, Zhong R, Ye Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 2009, 21: 248–266 [7]Millar A A, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005, 17: 705–721 [8]Muller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell, 2006, 18: 586–597 [9]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78 [10]Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S Iet al.Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623–635 [11]Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739–1751 [12]Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol, 2010, 153: 145–158 [13]Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 2003, 15: 2551–2565 [14]Seo P J, Xiang F, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275–289 [15]Seo P J, Park C M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol, 2010, 186: 471–483 [16]Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q H. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell, 2013, 25: 1158–1173 [17]Liu X, Yang L H, Zhou X Y, Zhou M P, Lu Y, Ma L J, Zhang Z Y. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 2013, 64: 2243–2253 [18]Al-Attala M N, Wang X, Abou-Attia M A, Duan X, Kang Z. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Mol Biol, 2014, 84: 589–603 [19]Zhang Z J, Chen J M, Su Y Y, Liu H M, Chen Y E, Luo P G, Du X G, Wang D, Zhang H Y. TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat. PLoS One, 2015, 10, doi: 10.1371/journal.pone.0127723 [20]Christensen A H, Quail P H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res, 1996, 5: 213–218 [21]Zhu X L, Yang K, Wei X N, Zhang Q F, Rong W, Du L P, Ye X G, Qi L, Zhang Z Y. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. J Exp Bot, 2015, 66: 6591–6603 [22]徐惠君, 庞俊兰, 叶兴国, 杜丽璞, 李连城, 辛志勇, 马有志, 陈剑平, 陈炯, 程顺和, 吴宏亚. 基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究. 作物学报, 2001, 27: 688–693 Xu H J, Pang J L, Ye X G, Du L P, Li LnC, Xin Z Y, Ma Y Z,Chen J P, Chen J, Cheng S H, Wu H Y. Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin, 2001, 27: 688–694 (in Chinese with English abstract) [23]Sharp P J, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290 [24]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2???Ct method. Methods, 2001, 25: 402–408 [25]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic, 2010, 10: 215–226 [26]Daniel X, Lacomme C, Morel J B, Roby D. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant J, 1999, 20: 57–66 [27]Vailleau F, Daniel X, Tronchet M, Montillet J L, Triantaphylides C, Roby D. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA, 2002, 99: 10179–10184 [28]Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834 [29]Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot, 2008, 59: 4195–4204 [30]Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol, 2012, 196: 1155–1170 [31]Liu X, Yang L H, Zhou X Y, Zhou M P, Lu Y, Ma L J, Ma H X, Zhang Z Y. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot, 2013, 64: 2243–2253 [32]Zhu X L, Qi L, Liu X, Cai S B, Xu H J, Huang R F, Li J R, Wei X N, Zhang Z Y. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol, 2014, 164: 1499–1514 [33]Shin S, Mackintosh C A, Lewis J, Heinen S J, Radmer L, Dill-Macky R, Baldridge G D, Zeyen R J, Muehlbauer G J. Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot, 2008, 59: 2371–2378 [34]Li Z, Zhou M P, Zhang Z Y, Ren L J, Du L P, Zhang B Q, Xu H J, Xin Z Y. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics, 2011, 11: 63–70 [35]Zhu X L, Li Z, Xu H J, Zhou M P, Du L P, Zhang Z Y. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genomics, 2012, 12: 481–488 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248. |
|