欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1437-1447.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质

陈天晓1,2,朱亚军3,密雪飞3,陈凯3,孟丽君3,左示敏1,*,徐建龙2,3,4,*   

  1. 1扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心,教育部植物功能基因组学重点实验室,江苏扬州225009;2中国农业科学院作物科学研究所,北京100081;3中国农业科学院深圳农业基因组研究所,广东深圳518210;4中国农业科学院深圳生物育种创新研究院,广东深圳518210
  • 收稿日期:2016-03-07 修回日期:2016-06-20 出版日期:2016-10-12 网络出版日期:2016-07-04
  • 通讯作者: 徐建龙,E-mail:xujlcaas@126.com,Tel:010-82105854;左示敏,E-mail:smzuo@yzu.edu.cn,Tel:0514-87972136
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2014AA10A601),深圳孔雀团队计划项目(20130415095710361),中国农业科学院科技创新工程团队和江苏重点研发计划(现代农业)(BE2015363)项目资助。

Mapping of QTLs for Bacterial Blight Resistance and Screening of Resistant Materials Using MAGICP opulations of Rice

CHEN Tian-Xiao1,2, ZHU Ya-Jun3, MI Xue-Fei3, CHEN Kai3, MENG Li-Jun3, ZUO Shi-Min1,*, and XU Jian-Long2,3,4,*   

  1. 1 Key Laboratory of Plant Functional Genomics of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518210, China; 4 Shenzhen Institute of Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
  • Received:2016-03-07 Revised:2016-06-20 Published:2016-10-12 Published online:2016-07-04
  • Contact: 徐建龙,E-mail:xujlcaas@126.com,Tel:010-82105854;左示敏,E-mail:smzuo@yzu.edu.cn,Tel:0514-87972136

摘要:

以8个不同亲本构建的遗传上相互关联的多亲本高代互交系(multi-parents advanced generation inter-cross, MAGIC)群体,包括2个4亲本群体(DC1和DC2)和1个8亲本群体(DC3)为材料,接种我国白叶枯病强致病力V型菌系(GD-V)和弱致病力II型菌系(C2),关联分析定位MAGIC群体对白叶枯病的抗性QTL,筛选抗病种质。结果表明,大多数亲本对C2菌系表现抗病,而对GD-V表现感病,3个MAGIC群体的病斑长度均出现超亲分离。共检测到7个白叶枯病抗性QTL,大多表现数量抗性,而且抗性QTL表达存在明显的遗传背景效应。QBbr11-1和QBbr11-2受遗传背景影响较小,具有一定的育种应用价值。从3个群体筛选出8份不同抗病QTL聚合的抗病材料,表明质量抗性基因和水平抗性数量性状位点的结合可以显著提高抗性水平。8份不同抗病QTL的聚合系可以用作抗病育种的中间抗源。研究结果表明,MAGIC群体可以将遗传研究和育种应用有机结合,是遗传研究和开展标记辅助育种的理想群体。

关键词: MAGIC, 水稻白叶枯病, QTL, 全基因组关联分析, 水稻

Abstract:

Three genetically interconnected multi-parents advanced generation inter-cross, (MAGIC), including two populations (DC1 and DC2) derived from four parents and one population from eight parents (DC3) were used to detect QTLs for resistance to two strains, a weak virulent C2 and a strong virulent GD-V of Xanthomonas oryzae pv. oryzae (Xoo) and to screen resistant breeding materials. Most parents were resistant to C2 and susceptible to GD-V. Transgressive segregations of lesion length for the two strains were observed in the three MAGIC populations and showed continuous distributions. A total of seven QTLs affecting lesion length of two strains were detected. Most QTLs showed quantitative resistance and obvious genetic background effect. Among the seven QTLs, QBbr11-1 and QBbr11-2 had less genetic background effect, which is valuable in rice breeding for disease resistance. Eight resistant lines pyramiding different QTLs were screened from the three MAGIC populations, indicating the combination of qualitative resistance gene and quantitative resistance gene can significantly improve resistance level. The eight resistant breeding lines could be used as resistant donors in rice breeding for resistance. The results indicated that the MAGIC populations are ideal material for genetic study and marker-assisted breeding, showing a tight integration of genetic research and breeding application in rice.

Key words: Multi-parentAdvancedGenerationInter-Crosses(MAGIC), Ricebacterialblight, Quantitativetraitloci(QTL), Genome-wideassociationstudy(GWAS), Rice

[1]MewTW.Currentstatusandfutureprospectsofresearchonbacterialblightofrice.AnnuRevPhytopathol,1987,25:359–382 [2]ChenS,LiuX,ZengL,Ou-YangDM,YangJ,ZhuX.Geneticanalysisandmolecularmappingofanovelrecessivegenexa34(t)forresistanceagainstXanthomonasoryzaepv.oryzae.TheorApplGenet,2011,122:1331–1338 [3]Ni?o-LiuDO,RonaldPC,BogdanoveAJ.Xanthomonasoryzaepathovars:Modelpathogensofamodelcrop.MolPlantPathol,2006,7:303–324 [4]虞玲锦,张国良,丁秀文,高雨,谢寅峰.水稻抗白叶枯病基因及其应用研究进展.植物生理学报,2012,48:223–231 YuLJ,ZhangGL,DingXW,GaoY,XieYF.Progressinidentificationandapplicationofresistancegenestobacterialblight.PlantPhysiolJ,2012,48:223–231(inChinesewithEnglishabstract) [5]罗利军,梅捍卫,赵新华,钟代彬,王一平,余新桥,应存山.水稻白叶枯病抗性基因定位及其小种专化性.中国科学,1998,28:536–541 LuoLJ,MeiHW,ZhaoXH,ZhongDB,WangYP,YuXQ,YingCS.Mappingofresistancegenestobacterialblightofriceandtheirracespecificityinrice.ChinSci,1998,28:536–541(inChinese) [6]KimSM,SuhJP,QinY,NohTH,ReinkeRF,JenaKK.Identificationandfine-mappingofanewresistancegene,Xa40,conferringresistancetobacterialblightracesinrice(OryzasativaL.).TheorApplGenet,2015,128:1933–1943 [7]章琦.中国杂交水稻白叶枯病抗性的遗传改良.中国水稻科学,2009,23:111–119 ZhangQ.GeneticsandimprovementofresistancetobacterialblightinhybridriceinChina.ChinJRiceSci,2009,23:111–119(inChinesewithEnglishabstract) [8]KhanMA,NaeemM,IqbalM.Breedingapproachesforbacterialleafblightresistanceinrice(OryzasativaL.),currentstatusandfuturedirections.EurJPlantPathol,2014,139:27–37 [9]PersonC,SamborskiDJ,RohringerR.Thegene-for-geneconcept.Nature,1962,194:561–562 [10]EaVDB,JonesJD.Plantdisease-resistanceproteinsandthegene-for-geneconcept.TrendsBiolchemSci,1998,23:454–456 [11]LiZK,LuoLJ,MeiHW,PatersonAH,ZhaoXH,ZhongDB,WangYP,YuXQ,ZhuL,TabienR,StanselJW,YingCS.A“defeated”riceresistancegeneactsasaQTLagainstavirulentstrainofXanthomonasoryzaepv.oryzae.MolGenGenet,1999,261:58–63 [12]ZhaoKY,TungCW,EizengaGC,WrightMH,AliML,PriceAH,NortonGJ,IslamMR,ReynoldsA,MezeyJ,McClungAM,BustamanteCD,McCouchSR.Genome-wideassociationmappingrevealsarichgeneticarchitectureofcomplextraitsinOryzasativa.NatCommun,2011,2:1–10 [13]MengLJ,ZhaoXQ,PonceK,LeungH,YeGY.QTLmappingforagronomictraitsusingmulti-parentadvancedgenerationinter-cross(MAGIC)populationsderivedfromdiverseeliteindicaricelines.FieldCropsRes,2016,189:19–42 [14]KauffmanHE,ReddyAPK,HsiehSPY,MercaSD.ImprovedtechniqueforevaluatingresistanceofricevarietiestoXanthomonasoryzae.PlantDisRep,1973,57:537–541 [15]BradburyP,ZhangZ,KroonD,CasstevensTY,BucklerE.TASSEL:softwareforassociationmappingofcomplextraitsindiversesamples.Bioinformatics,2007,23:2633–2635 [16]ValdarW,FlintJ,MottR.Simulatingthecollaborativecross:Powerofquantitativetraitlocidetectionandmappingresolutioninlargesetsofrecombinantinbredstrainsofmice.Genetics,2006,172:1783–1797 [17]CavanaghC,MorellM,MackayI,PowellW.FrommutationstoMAGIC,resourcesforgenediscovery,validationanddeliveryincropplants.CurrOpinPlantBiol,2008,11:215–221 [18]HuangBE,VerbylaKL,VerbylaAP,RaghavanC,SinghVK,GaurP,LeungH,VarshneyRK,CavanaghCR.MAGICpopulationsincrops:currentstatusandfutureprospects.TheorApplGenet,2015,128:999–1017 [19]BandilloN,RaghavanC,MuycoPA,SevillaMAL,LobinaIT,Dilla-ErmitaCJ,TungCW,McCouchS,ThomsonM,MauleonR,SinghRK,GregorioG,Redo?aE,LeungH.Multi-parentadvancedgenerationinter-cross(MAGIC)populationsinrice:progressandpotentialforgeneticsresearchandbreeding.Rice,2013,6:1–15 [20]LeungH,RaghavanC,ZhouB,OlivaR,ChoiIR,LacorteV,JubayML,CruzCV,GregorioG,SinghRK,UlatVJ,BorjaFN,MauleonR,AlexandrovNN,McNallyKL,HamiltonRS.Alleleminingandenhancedgeneticrecombinationforricebreeding.Rice,2015,8:1–11 [21]SunX,YangZ,WangS,ZhangQ.Identificationofa47-kbDNAfragmentcontainingXa4,alocusforbacterialblightresistanceinrice.TheorApplGenet,2003,106:683–687 [22]WangCT,TanMP,XuX,WenGS,ZhangDP,LinXH.Localizingthebacterialblightresistancegene,Xa22(t),toa100-Kilobasebacterialartificialchromosome.Phytopathology,2003,93:1258–1262 [23]郑崇珂,王春连,于元杰,梁云涛,赵开军.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位.作物学报,2009,35:1173–1180 ZhengCK,WangCL,YuYJ,LiangYT,ZhaoKJ.IdentificationandmolecularmappingofXa32(t),anovelresistancegeneforbacterialblight(Xanthomonasoryzaepv.oryzae)inrice.ActaAgronSin,2009,35:1173–1180(inChinesewithEnglishabstract) [24]郭嗣斌,张端品,林兴华.小粒野生稻抗白叶枯病新基因的鉴定与初步定位.中国农业科学,2010,43:2611–2618 GuoSB,ZhangDP,LinXH.IdentificationandmappingofanovelbacterialblightresistancegeneXa35(t)originatedfromoryzaminuta.SciAgricSin,2010,43:2611–2618(inChinesewithEnglishabstract) [25]苗丽丽,王春连,郑崇珂,车晋英,高英,温义昌,李贵全,赵开军.水稻抗白叶枯病新基因的初步定位.中国农业科学,2010,43:3051–3058 MiaoLL,WangCL,ZhengCK,CheJY,GaoY,WenYC,LiGQ,ZhaoKJ.Molecularmappingofanewgeneforresistancetoricebacterialblight.SciAgricSin,2010,43:3051–3058(inChinesewithEnglishabstract) [26]XiangY,CaoYL,XuCG,LiXH,WangSP.Xa3,conferringresistanceforricebacterialblightandencodingareceptorkinase-likeprotein,isthesameasXa26.TheorApplGenet,2006,113:1347–1355 [27]WangY,ZhangQ,ZhengTQ,CuiYR,ZhangWZ,XuJL,LiZK.Drought-toleranceQTLscommonlydetectedintwosetsofreciprocalintrogressionlinesinrice.Crop&PastureSci,2014,65:171–184 [28]WangY,ZangJP,SunY,AliJ,XuJL,LiZK.Background-independentquantitativetraitlocifordroughttoleranceidentifiedusingadvancedbackcrossintrogressionlinesinrice.CropSci,2013,53:430–441 [29]ChengLR,WangY,MengLJ,HuX,CuiYR,SunY,ZhuLH,AliJ,XuJL,LiZK.Identificationofsalt-tolerantQTLswithstronggeneticbackgroundeffectusingtwosetsofreciprocalintrogressionlinesinrice.Genome,2012,55:45–55 [30]杨静,孙勇,程立锐,周政,王韵,朱苓华,苍晶,徐建龙,黎志康.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响.作物学报,2009,35:974?982 YangJ,SunY,ChengLR,ZhouZ,WangY,ZhuLH,CangJ,XuJL,LiZK.GeneticbackgroundeffectonQTLmappingforsalttolerancerevealedbyasetofreciprocalintrogressionlinepopulationsinrice.ActaAgronSin,2009,35:974?982(inChinesewithEnglishabstract) [31]BanerjeeD,ZhangX,BentAF.Theleucine-richrepeatdomaincandetermineeffectiveinteractionbetweenRPS2andotherhostfactorsinArabidopsisRPS2-mediateddiseaseresistance.Genetics,2001,158:439–450 [32]徐建龙,林贻滋,张炳林,翁锦屏.水稻白叶枯病抗性基因Xa-21的初步利用.浙江农业学报,1996,8:70–73 XuJL,LinYZ,ZhangBL,WengJP.StudyonutilizationofXa-21generesistanttobacterialblightinrice.ActaAgricZhejianggensis,1996,8:70–73(inChinesewithEnglishabstract) [33]SunXL,GaoYL,YangZF,XuCG,LiXH,WangSP,ZhangQF.Xa26,ageneconferringresistancetoXanthomonasoryzaepv.oryzaeinrice,encodesanLRRreceptorkinase-likeprotein.PlantJ,2004,37:517–527 [34]于彦春,滕胜,曾大力,董国军,钱前,黄大年,朱立煌.水稻抗白叶枯病微效QTL的定位分析.中国水稻科学,2003,17:315–318 YuYC,TengS,ZengDL,DongGJ,QianQ,HuangDN,ZhuLH.AnalysisofQTLsforresistancetoricebacterialbight.ChinJRiceSci,2003,17:315–318(inChinesewithEnglishabstract) [35]WangCM,SuCC,ZhaiHQ,WanJM.IdentificationofQTLsunderlyingresistancetoavirulentstrainofXanthomonasoryzaepv.oryzaeinricecultivarDV85.FieldCropsRes,2005,91:337–343 [36]LiZK,ArifM,ZhongDB,FuBY,Domingo-ReyJ,AliJ,VijayakumarCHM,YuSB,KhushGS.Complexgeneticnetworksunderlyingthedefensivesystemofrice(OryzasativaL.)toXanthomonasoryzaepv.oryzae.ProcNatlAcadSciUSA,2006,103:7994–7999 [37]ZhangF,XieXW,XuMR,WangWS,XuJL,ZhouYL,LiZK.DetectingmajorQTLassociatedwithresistancetobacterialblightusingasetofricereciprocalintrogressionlineswithhighdensitySNPmarkers.PlantBreed,2015,134:286–292 [38]ZhouYL,UzokweVNE,ZhangCH,ChengLR,WangL,ChenK,GaoXQ,SunY,ChenJJ,ZhuLH,ZhangQ,AliJ,XuJL,LiZK.ImprovementofbacterialblightresistanceofhybridriceinChinausingtheXa23genederivedfromwildrice(Oryzarufipogon).CropProtection,2011,30:637–644 [39]LeeSW,ChoiSH,HanSS,LeeDG,LeeBY.DistributionofXanthomonasoryzaepv.oryzaestrainsvirulenttoXa21inKorea.Phytopathology,1999,89:928–933 [40]ShantiML,GeorgeMLC,CruzCMV,BernardoMA,NelsonRJ,LeungH,ReddyJN,SridharR.IdentificationofresistancegeneseffectiveagainstricebacterialblightpathogenineasternIndia.PlantDis,2001,85:506–512 [41]曾列先,黄少华,伍尚忠.IRBB21(Xa21)对广东稻白叶枯病菌5个小种的抗性反应.植物保护学报,2002,29:97–100 ZengLX,HuangSH,WuSZ.ResistanceofIRBB21(Xa21)tofiveracesofbacterialblightinGuangdong.ActaPhytophylSin,2002,29:97–100(inChinese) [42]GuKY,YangB,TianDS,WuLF,WangDJ,SreekalaC,YangF,ChuZQ,WangGL,WhiteFF,YinZC.Rgeneexpressioninducedbyatype-IIIeffectortriggersdiseaseresistanceinrice.Nature,2005,435:1122–1125

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[4] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[5] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[6] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[12] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[13] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[14] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[15] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!