欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (12): 1764-1778.doi: 10.3724/SP.J.1006.2016.01764

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦燕大1817×北农6号重组自交系群体在正常和盐胁迫水培条件下苗期性状的QTL定位

周升辉1,吴秋红1,谢菁忠1,陈娇娇1,陈永兴1,傅琳1,王国鑫1,于美华1,王振忠2,张德云1,王令1,王丽丽1,张艳3,梁荣奇1,韩俊4,刘志勇1,*   

  1. 1中国农业大学农学院, 北京 100193; 2中国农村技术开发中心, 北京 100045; 3中国农业大学园艺学院, 北京 100193; 4北京农学院, 北京102206
  • 收稿日期:2016-04-19 修回日期:2016-06-20 出版日期:2016-12-12 网络出版日期:2016-07-04
  • 通讯作者: 刘志勇, E-mail: zyliu@genetics.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31301312, 31271710)资助。

Mapping QTLs for Wheat Seedling Traits in RILs Population of Yanda 1817 × Beinong 6 under Normal and Salt-Stress Conditions

ZHOU Sheng-Hui1,WU Qiu-Hong1,XIE Jing-Zhong1,CHEN Jiao-Jiao1,CHEN Yong-Xing1,FU Lin1,WANG Guo-Xin1,YU Mei-Hua1,WANG Zhen-Zhong2,ZHANG De-Yun1,WANG Ling1,WANG Li-Li1,ZHANG Yan3,LIANG Rong-Qi1,HAN Jun4,LIU Zhi-Yong1,*   

  1. 1College of Agronomy, China Agricultural University, Beijing 100193, China; 2 China Rural Technology Development Center, Beijing 100045, China;
    3 College of Horticulture, China Agricultural University, Beijing 100193, China; 4 Beijing University of Agriculture, Beijing 102206, China
  • Received:2016-04-19 Revised:2016-06-20 Published:2016-12-12 Published online:2016-07-04
  • Contact: LIU Zhiyong, E-mail: zyliu@genetics.ac.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31301312, 31271710).

摘要:

小麦苗期性状能够指示品种的耐盐性。本研究以小麦骨干亲本燕大1817与品系北农6号衍生的230个重组自交系为材料,利用2013年3个不同时间的水培试验数据和已经构建的SSR和SNP高密度遗传连锁图谱分别对正常和盐胁迫条件下根数和最长根长等7个苗期性状进行QTL定位。利用完备复合区间作图法(ICIM)共检测到69个加性效应QTL(LOD≥2.5),分布于除1A染色体外的所有20条染色体上,单个QTL解释的表型变异率为2.70%~19.00%。有46个QTL的增效效应来自于燕大1817,有23个QTL的增效效应来自于北农6号。有12个QTL能够在3个或3个以上的环境中被检测到,在燕大1817中定位到稳定的多分蘖主效QTLQTn.cau-7BS.1和盐胁迫条件下特异表达的根数QTLQRn.cau-2A,解析了小麦骨干亲本燕大1817的繁茂性和抗逆性遗传基础,为解析小麦品种耐盐遗传机理和耐盐性的分子标记辅助选择提供了重要信息。

关键词: 小麦, 重组自交系, 苗期, 耐盐, 数量性状位点

Abstract:

Seedling traits are known to be important indicators of salt tolerance inwheat (Triticumaestivum L.). Quantitative trait loci (QTLs) mapping for wheat seedling traits under salt stress and normal hydroponics conditions were conducted at three times during 2013 using a set of 230 recombinant inbred lines (RILs) derived from across of Yanda 1817 × Beinong 6 and an available high-density integrated SSR and SNP genetic linkage map. A total of 69 putative QTLs associated with sevenseedling traits were detected on 20 chromosomes except for 1Aby inclusive composite interval mapping (ICIM) at LOD≥2.5. A single QTL explained 2.70–19.00% of the phenotypic variation. Of which, 46 QTLs showed additive effects originated from Yanda 1817, whereas 23 QTLs showed additive effects derived from Beinong 6, indicating that the founder parentYanda 1817 is an important genetic resource for salt tolerance in wheat. Twelve QTLsare considered to be stable QTLs because they were detected in at least three environments, including the major QTLQTn.cau-7BS.1for tiller numberandthe salt-induced QTL QRn.cau-2Afor root number, bothoriginating from Yanda 1817. These results may explain the genetic bases of luxuriant growing habit and stress tolerance of Yanda 1817.

Key words: Wheat, RIL, Seedling, Salt tolerance, QTL

[1]Parida A K, Das A B. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf, 2005, 60: 324–349
[2]Rogers M E, Craig A D, Munns R E, Colmer T D, Nichols P G H, Malcolm C V, Barrett-Lennard E G, Brown A J, Semple W S, Evans P M, Cowley K, Hughes S J, Snowball R, Bennett S J, Sweeney G C, Dear B S, Ewing M A. The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric, 2005, 45: 301–329
[3]El-Hendawy S E, Hu Y C, Yakout G M, Awad A M, Hafiz S E, Schmidhalter U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron, 2005, 22: 243–253
[4]Zhang X K, Lu G Y, Long W H, Zou X L, Li F, Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci, 2014, 64: 60–73
[5]Tuberosa R, Salvi S. Dissecting QTLs for tolerance to drought and salinity.In: Jenks M, Hasegawa P,Jain SMeds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Netherlands, 2007. pp 381–411
[6]武玉清, 刘录祥, 郭会君, 赵林姝, 赵世荣.小麦苗期耐盐相关性状的QTL分析. 核农学报, 2007, 21: 545–549
Wu Y Q, Liu L X, Guo H J, Zhao L S, Zhao S R. Mapping QTL for salt tolerant traits in wheat. J Nucl Agric Sci, 2007, 21: 545–549 (in Chinese with English abstract)
[7]任永哲, 徐艳花, 贵祥卫, 王素平, 丁锦平, 张庆琛, 马原松, 裴冬丽.盐胁迫下调控小麦苗期性状的QTL分析. 中国农业科学, 2012, 45: 2793–2800
Ren Y Z, Xu Y H, Gui X W, Wang S P, Ding J P, Zhang Q C, Ma Y S, Pei D L. QTLs analysis of wheat seedling traits under salt stress. Sci Agric Sin, 2012, 45: 2793–2800 (in Chinese with English abstract)
[8]Garcia-Suarez J V, Diaz de Leon J L, Roder M S. Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress. Cereal Res Commun, 2010, 38: 163–174
[9]Xu Y, Li S, Li L, Zhang X, Xu H, An D. Mapping QTLs for salt tolerance with additive, epistatic and QTL?treatment interaction effects at seedling stage in wheat. Plant Breed, 2013, 132: 276–283
[10]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894
[11]Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P, Wang L L, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng H R, Yuan C G, You M S, Sun Q X, Wang J R, Wang L X, Luo M C, Han J, Liu Z Y. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 ×Beinong6. PLoS One, 2015, 10: e0118144
[12]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374
[13]Huang XQ, Coster H, Ganal MW, Roder MS. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 106: 1379–1389
[14]吴儒刚, 陈广凤, 李冬梅, 田纪春. 盐胁迫下小麦幼苗相关性状QTL加性及其上位性效应分析. 山东农业大学学报(自然科学版), 2015,46: 652–657
Wu R G, Chen G F, Li D M, Tian J C. Analysis on quantitative trait loci additive and epistatic effects of wheat seedling under salt stress. J Shandong Agric Univ (Nat Sci Edn), 2015, 46: 652–657(in Chinese with English abstract)
[15]Zhang H, Cui F, Wang L, Li J, Ding AM, Zhao CH, Bao YG, Yang QP, Wang HG. Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet, 2013, 92: 213–231
[16]Masoudi B, Mardi M, Hervan E M, Bihamta M R, Naghavi M R, Nakhoda B, Amini A. QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep, 2015. 33: 1790–1803
[17]Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Safety, 2014, 104: 202–208
[18]Xu Y F, An D G, Liu D C, Zhang A M, Xu H X, Li B. 2012. Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica, 186: 233–245
[19]Winicov I. New molecular approaches to improving salt tolerance in crop plants. Ann Bot, 1998, 82: 703–710
[20]Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012
[21]Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol, 2010, 51: 997–1006
[22]吴纪中, 刘妍妍, 王冲, 沈振国, 蔡士宾, 张巧凤, 夏妍, 王桂萍, 陈亚华. 人工海水胁迫下小麦种质资源的耐盐性筛选与鉴定. 植物遗传资源学报, 2014, 15: 948–953
Wu J Z, Liu Y Y, Wang C, Shen Z G, Cai S B, Zhang Q F, Xia Y, Wang G P, Chen Y H. Screening and identification of wheat germplasm for salt tolerance using artificial sea water. J Plant Genet Resour, 2014, 15: 948–953 (in Chinese with English abstract)
[23]Lindsay M P, Lagudah E S, Hare R A, Munns R. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol, 2004, 31: 1105–1114
[24]James R A, Davenport R, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537–1547
[25]Azadi A, Mardi M, Hervan E M, Mohammadi S A, Moradi F, Tabatabaee M T, Pirseyedi S M, Ebrahimi M, Fayaz F, Kazemi M, Ashkani S, Nakhoda B, Mohammadi-Nejad G. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep, 2015, 33: 102–120
[26]Austin D F, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38: 1296–1308
[27]龚继明, 郑先武, 杜保兴, 钱前, 陈受宜, 朱立煌, 何平.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究. 中国科学(C辑:生命科学), 2000, 30: 561–569
Gong J M, Zheng X W, Du B X, Qian Q, Chen S Y, Zhu L H, He P. Comparative study of QTL for rice important agronomic traits under normal and salt-Stress conditions. Sci China (Ser C), 2000, 30: 561–569 (in Chinese)
[28]金善宝. 中国小麦品种及其系谱. 北京: 农业出版社, 1983
Jin SB. Wheat Varieties and Their Pedigrees in China. Beijing: Agriculture Press, 1983 (in Chinese)
[29]庄巧生. 中国小麦品种改良及其系谱分析. 北京: 农业出版社, 2003
Zhuang QS. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)
[30]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404
Hang J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. ActaAgron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!