[1] Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol, 2002, 53: 247–273
[2] Loidl P. A plant dialect of the histone language. Trends Plant Sci, 2004, 9: 80–90
[3] Fong P M, Tian L, Chen Z J. Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Res, 2006, 16: 479–488
[4] Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y F, Peng H, Zhou D X. The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stressand metabolism- related genes and transposable elements. PLoS One, 2013, 8(6): p.e66807
[5] Ma X J, Lv S B, Zhang C, Yang C P. Histone deacetylases and their functions in plants. Plant Cell Rep, 2013, 32: 465–478
[6] Devoto A, Nieto-Rostro M, Xie D X, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J. COI1 links jasmonate signalling and fertility to the SCF ubiquitinligase complex in Arabidopsis. Plant J, 2002, 32: 457–466
[7] Tanaka M, Kikuchi A, Kamada H, Kamada H. The Arabidopsis histonedeacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149–161
[8] Zhou C H, Zhang L, Duan J, Miki B, Wu K Q. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 2005, 17: 1196–1204
[9] Cigliano R A, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R, Consiglio M F, Conicella C. Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol, 2013, 163, 431–440
[10] Liu C, Li L C, Chen W Q, Chen X, Xu Z H, Bai S N. HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell, 2013, 25: 257–269
[11] Martijn V Z, Christian Z, Zhi W, Christina P, Annaick C, Li Y, Noortje G K, Liu Y X, Soppe W J. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J, 2014, 80: 475–488
[12] Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One, 2014, 9: e106070
[13] Li X Y, Lu J B, Liu S, Liu X, Lin Y Y, Li L. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol, 2014, 14: 116–119
[14] Su L C, Deng B, Liu S, Li L M, Hu B, Zhong Y T, Li L. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci, 2015, 6: 512-522
[15] Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419: 407–411
[16] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Broun P, Zhang J Z, Ghandehair D, Sherman B K, Yu G L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110
[17] Kang J, Yu H, Tian C, Zhou W, Li C, Liao Y, Liu D. Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol, 2014, 165: 1156–1170
[18] Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw M K, Westhoff P, Slamet-Loedin I H, Quick W P, Hibberd J M, Langdale J A. Evolution of GOLDEN2-LIKE gene function in C3 and C4plants. Planta, 2012, 237: 481–495
[19] Nguyen C V, Vrebalov J T, Gapper N E, Yi Z, silin Z, Zhang J F, James J, Giovannoni. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell, 2014, 26: 585–601
[20] Fitter D W, Martin M J, Copley D J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713–727
[21] Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol Plant Pathol, 2014, 15: 174–184
[22] Rauf M, Arif M, Dortay H, Matallana-Ramirez L P, Waters M T, Nam H G, Lim P O, Mueller-Roeber B, Balazadeh S. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. Embo Reports, 2013, 14: 382–388
[23] Cress W D, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol, 2000, 184: 1–16
[24] Sarah F, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675–1690
[25] Bunch N L, Spasojevic M, Shprits Y Y, Gu X, Foust F. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279–292 |