欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (04): 496-500.doi: 10.3724/SP.J.1006.2017.00496

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL

宫希1,蒋云峰2,徐彬杰2,乔媛媛2,华诗雨1,吴旺1,马建2,周小鸿2,祁鹏飞2,*,兰秀锦2   

  1. 1四川农业大学农学院, 四川成都 611130; 2四川农业大学小麦研究所, 四川成都 611130
  • 收稿日期:2016-04-14 修回日期:2016-11-03 出版日期:2017-04-12 网络出版日期:2016-11-29
  • 通讯作者: 祁鹏飞, E-mail: pengfeiqi@hotmail.com, Tel: 028-82650337
  • 基金资助:

    本研究由国家自然科学基金项目(31570335)资助。

Mapping QTLs for Awn Length in Recombinant Inbred Line Population Derived from the Cross between Common Wheat and Tibetan Semi-wild Wheat

GONG Xi1,JIANG Yun-Feng2,XU Bin-Jie2,QIAO Yuan-Yuan2,HUA Shi-Yu1,WU Wang1,MA Jian2,ZHOU Xiao-Hong2,QI Peng-Fei2,*,LAN Xiu-Jin2   

  1. 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; 2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
  • Received:2016-04-14 Revised:2016-11-03 Published:2017-04-12 Published online:2016-11-29
  • Contact: Qi Pengfei, E-mail: pengfeiqi@hotmail.com, Tel: 028-82650337
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31570335).

摘要:

芒长是普通小麦的重要农艺性状,受多个基因控制。本研究利用长芒的普通小麦郑麦9023与无芒的西藏半野生小麦Q1028构建一个重组自交系群体(186个株系);采用SSR和DArT分子标记,构建覆盖小麦全基因组的遗传图谱(2597 cM)。基于重组自交系群体两年芒长表型数据,采用ICIM作图法对小麦芒长性状进行QTL定位分析。共检测到2个与芒长相关的QTL,即Qwa.sau-4AS和Qwa.sau-5AL。它们分别位于4AS和5AL染色体上,可分别解释7.4%和27.3%的表型变异。这2个QTL效应可能分别来源于钩芒基因Hd与抑芒基因B1。利用连锁标记进行基因型分析,表明Qwa.sau-4AS与Qwa.sau-5AL对芒长的抑制效果具有累加效应,且Qwa.sau-5AL效应强于Qwa.sau-4AS。本研究将为精细定位及克隆这2个QTL奠定基础。

关键词: 普通小麦, 芒长, QTL, SSR标记, DArT标记

Abstract:

Awn length is an important agronomic trait in hexaploid wheat and controlled by multiple genes. A recombinant inbred line (RIL) population containing 186 lines were developed by crossing Tibetan semi-wild wheat accession Q1028 (female) and common wheat variety Zhengmai 9023, and a genome-wide genetic map (2597 cM) was constructed using SSR and DArT markers. QTLs controlling awn length were identified with two-year phenotypic data and the genetic map by using the Inclusive Composite Interval Mapping (ICIM) method. Two QTLs associated with awn length, designated Qwa.sau-4AS and Qwa.sau-5AL, were detected on chromosomes 4A and 5A, which explained 7.4% and 27.3% of phenotypic variations, respectively. According to genetic locations, effects of the two QTLs might be from Hd and B1 genes that could reduce awn length, respectively. Genetic analysis showed that Qwa.sau-4AS and Qwa.sau-5AL had cumulative effect, with a stronger inhibiting effect in Qwa.sau-5AL than in Qwa.sau-4AS. These results are valuable for fine mapping and cloning target genes controlling awn length in the future.

Key words: Common wheat, Awn length, QTL, SSR marker, DArT marker

[1] Biscoe P V, Littleton E J, Scott R K. Stomatal control of gas exchange in barley awns. Ann Appl Biol, 1973, 75: 285–297 [2] Blum A . Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot, 1985, 36: 432–440 [3] 黄瑾, 骆惠生, 张勃, 贾秋珍, 金明安, 曹世勤, 金社林. 普通小麦芒的遗传分析. 甘肃农业科技, 2011, (2): 11–12 Huang J, Luo H S, Zhang B, Jia Q Z, Jin M A, Cao S Q, Jin S L. Genetic analysis of mount of common wheat. Gansu Agric Sci Tech, 2011, (2): 11–12 (in Chinese with English abstract) [4] 巴青松, 傅兆麟, 白凡杰. 小麦芒的研究. 淮北煤炭师范学院学报(自然科学版), 2010, 31(1): 29–33 Ba Q S, Fu Z l, Bai F J. The research of wheat awns. Journal of Huaibei Coal Industry Teachers College (Nat Sci Edn), 2010, 31(1): 29–33 (in Chinese with English abstract) [5] Maydup M L, Antonietta M, Graciano C, Guiamet J J, Tambussi E A. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res, 2014, 167: 102–111 [6] 王忠, 顾蕴洁, 高煜珠. 麦芒的结构及其光合特性. 植物学报, 1993, 35: 921–928 Wang Z, Gu Y J, Gao Y Z. Structure and photosynthetic characteristics of awns of wheat and barley. Acta Bot Sin, 1993, 35: 921–928 (in Chinese with English abstract) [7] Li X J, Wang H G, Li H B, Zhang L Y, Teng N J, Lin Q Q, Wang J, Kuang T Y, Li Z S, Li B, Zhang A M, Lin J X. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiol Plant, 2006, 127: 701–709 [8] Rebetzke G J, Bonnett D G, Reynolds M P. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot, 2016, 67: 2573–2586 [9] 杜斌, 崔法, 王洪刚, 李兴锋. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析. 分子植物育种, 2010, 8: 259–264 Du B, Cui F, Wang H G, Li X F. Characterization and genetic analysis of near-isogenic lines for awn-inhibitor gene B1 of common wheat. Mol Plant Breed, 2010, 8: 259–264 (in Chinese with English abstract) [10] Elbaum R, Zaltzman L, Burgert I, Fratzl P. The Role of wheat awns in the seed dispersal unit. Science, 2007, 316: 884–886 [11] 姚国新, 张强, 吴建涛, 胡广隆, 李自超. 利用近等基因系对水稻芒基因AWN3-1的遗传定位. 中国农业大学学报, 2010, 15(5): 1–5 Yao G X, Zhang Q, Wu J T, Hu G L, Li Z C. Mapping awn gene AWN3-1 with near-isogenic line of rice. J China Agric Univ, 2010, 15(5): 1–5 (in Chinese with English abstract) [12] Kosuge K, Watanabe N, Kuboyama T, Melnik V M, Yanchenko V I, Rosova M A, Goncharov N P. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 2008, 159: 289–296 [13] Li H, Han Y C, Guo X X, Xue F, Wang C Y, Ji W Q. Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol, 2015, 62: 407–418 [14] 金善宝. 中国小麦学. 北京: 中国农业出版社, 1996. p 13 Jin S B. Wheat Science in China. Beijing: China Agriculture Press, 1996. p 13 (in Chinese) [15] Sourdille P, Cadalen T, Gay G, Gill B, Bernard M. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed, 2002, 121: 320–324 [16] R?der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023 [17] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114 [18] Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915–9920 [19] Jiang Y F, Lan X J, Luo W, Kong X C, Qi P F, Wang J R, Wei Y M, Jiang Q T, Liu Y X, Peng Y Y, Chen G Y, Dai S F, Zheng Y L. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PloS One, 2014, 9: e114066 [20] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 121: 269–283 [21] Li H H, Ye G Y, Wang J K. A modified algorithm for the Improvement of Composite Interval Mapping. Genetics, 2007, 175: 361–374 [22] Wang Y J, Wang C Y, Zhang H, Yue Z N, Liu X L, Ji W Q. Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers. Genet Resour Crop Evol, 2013, 60: 1105–1117 [23] Wang H Y, Wang X E, Liu D J. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genomics, 2007, 34: 623–633 [24] Kosuge K, Watanabe N, Kuboyama T, Melnik V M ,Yanchenko V I ,Rosova M A , Goncharov N P. Comparison of the genetic diversity between Triticum aestivum ssp. tibetanum Shao and Tibetan wheat landraces (Triticum aestivum L.) by using intron-splice junction primers. Euphytica, 2008, 159: 289–296

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[5] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[11] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[12] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[13] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[14] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[15] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!