欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 306-312.doi: 10.3724/SP.J.1006.2018.00306

• • 上一篇    

基于田间表型和Bru1基因检测分析甘蔗褐锈病抗性遗传

李竹, 许莉萍*(), 苏亚春, 吴期滨, 成伟, 孙婷婷, 高世武   

  1. 福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002;
  • 收稿日期:2017-04-13 接受日期:2017-11-21 出版日期:2018-02-12 网络出版日期:2017-12-04
  • 通讯作者: 许莉萍
  • 作者简介:

    lizhu7799@163.com

  • 基金资助:
    本研究由国家自然科学基金项目(31571732)和国家现代农业产业技术体系建设专项(CARS-20)资助

Analysis of Brown Rust Resistance Inheritance Based on Field Phenotypes and Detection of Bru1 Gene in Sugarcane

Zhu LI, Li-Ping XU*(), Ya-Chun SU, Qi-Bin WU, Wei CHENG, Ting-Ting SUN, Shi-Wu GAO   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2017-04-13 Accepted:2017-11-21 Published:2018-02-12 Published online:2017-12-04
  • Contact: Li-Ping XU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31571732) and the China Agriculture Research System (CARS-20).

摘要:

由黑顶柄锈菌(Puccinia melanocephala)引起的甘蔗褐锈病具有产孢量大、流行性强的特点, 可导致甘蔗产量和蔗糖分的严重损失, 了解抗病性遗传有助于抗锈病育种中的亲本选择和组合配制, 而有效的抗性鉴定技术则是分离个体选择所必需的。本研究以甘蔗分离群体为材料, 利用表型与抗褐锈病主效基因Bru1检测相结合, 研究甘蔗褐锈病抗性遗传倾向并评价Bru1基因检测与表型抗性的关联性。结果显示, 发病盛期, 感病个体中, Bru1基因未检出率为96.7%, 但未感病个体中, Bru1基因的检出率仅为66.0%, 且高抗组合CP84-1198×云蔗89-7群体中的未感病个体, 该基因检出率为0, 尽管也发现有2个组合的未感病个体中, 该基因的检出率为100%。说明由Bru1基因控制的抗性可根据该基因的检测结果判断其抗/感病性, 同时, 甘蔗基因池中还存在其他未知的控制抗病性状的主效基因。值得强调的是, 父母本的抗病性均影响杂交后代的抗病性, 但以抗病亲本为父本的组合, 其分离群体的感病个体明显减少, 说明父本对杂交后代的褐锈病抗性影响可能更大。

关键词: 甘蔗, 褐锈病, 分离群体, 抗病性遗传, Bru1基因, 发病率

Abstract:

With characteristics of high pathogenic spore yield and strong popularity, sugarcane brown rust caused by Puccinia melanocephala leads to a serious loss in sugarcane yield and sucrose content. An understanding of the inheritance of brown rust resistance will contribute to parent selections and combination arrangements, while an efficient technique for resistance identification is necessary for selection of segregated individuals. Combination phenotypic survey with Bru1 gene detection, the segregated population derived from crossing combinations with different brown rust resistances was used to explore rust resistance inheritance and evaluate the efficiency of Bru1 gene detection. The undetected rate of Bru1 gene in the individuals with rust sensitivity at the stage of prosperous epidemic peak was 96.7%, while the detected rate in all uninfected individuals was only 66.0% in spite of two from four combinations showed 100.0% in resistant individuals. It indicates the disease sensitivity and resistance can be estimated based on the detection of Bru1 gene in the genetic background with rust resistance regulated by Bru1. In addition, none of the healthy individuals in the segregated population derived from combination of CP84-1198 × Yunzhe 89-7 have Bru1 gene been detected, suggesting the new resistance genes, different from Bru1, are present in sugarcane gene pool. In addition, both maternal and paternal components affected the rust susceptibility of their offspring, but male parent other than female parent tended to transmit a higher frequency of rust-susceptible genes.

Key words: sugarcane, brown rust, segregation population, inheritance of disease resistance, Bru1 gene, incidence rate

表1

甘蔗褐锈病抗病性鉴定评价标准"

分级标准
Grade
抗病性
Resistance
叶片侵染状况
Leaf infection performance
1 高抗
High resistance
无症状。
No symptoms.
2 抗病
Resistance
有坏死斑, 病斑占叶面积10%以下。
The area of necrotic spots on leaves is lower than 10%.
3
中抗
Moderate resistance
植株上有一些孢子堆, 病斑占叶面积11%~25%。
There are piles of spores visible on the plant. The percentages of lesion spots’ area to leaf area are 11%-25%.
4
中感
Moderate susceptibility
上层1~3片叶有一些孢子堆, 同时下层叶有许多孢子堆, 病斑占叶面积26%~35%。
There are some spore piles from leaf 1 to leaf 3 at the top and many spores on lower leaves. The percentages of lesion spots’ area in leaf are 26%-35%.
5
感病1
Susceptibility 1
上层1~3片叶有极多孢子堆, 同时下层叶有轻微的坏死, 病斑占叶面积36%~50%。
There are abundant spore piles from leaf 1 to leaf 3 at the top and slight necrotic spots on lower leaves. The percentages of lesion spots’ area in leaf are 36%-50%.
6
感病2
Susceptibility 2
上层1~3片叶有极多孢子堆且下层叶有比第5级更多的坏死, 病斑占叶面积51%~60%。
There are abundant spore piles from leaf 1 to leaf 3 at the top and more necrotic spots on lower leaves than those at grade 5. The percentages of lesion spots’ area in leaf are 51%-60%.
7
感病3
Susceptibility 3
上层1~3片叶有极多孢子堆, 下层叶坏死, 病斑占叶面积61%~75%。
There are abundant spore piles from leaf 1 to leaf 3 at the top and necrotic spots on lower leaves. The percentages of lesion spots’ area in leaf are 61%-75%.
8
高感1
High susceptibility 1
上层1~3片叶有某些坏死, 病斑占叶面积76%~90%。
There are some necrotic spots from leaf 1 to leaf 3 at the top. The percentages of lesion spots’ area in leaf are 76%-90%.
9
高感2
High susceptibility 2
叶片坏死, 植株濒于死亡, 病斑占叶面积91%~100%。
Leaves are necrotic and plants are almost dead. The percentages of lesion spots’ area in leaf are 91%-100%.

表2

甘蔗杂交亲本及其分离群体的褐锈病抗性、Bru1基因及发病率鉴定结果"

杂交组合
Hybrid combination
(♀ × ♂)
母本抗性等级/ Bru1检出结果
Resistance rank for female parent/ detected Bru1
父本抗性等级/ Bru1检出结果
Resistance rank for male parent/ detected Bru1
分离群体在发病盛期的
褐锈病发生率
Incidence rate in segregation population at the peak (%)
ROC251) × 柳城03-11372)
ROC25 × Liucheng 03-1137
高抗/ Y
High resistance/ Y
感病2/ N
Susceptibility 2/ N
39.0
ROC25 × 粤糖84-31)
ROC25 × Yuetang 84-3
高抗/ Y
High resistance/ Y
高感2/ N
High susceptibility 2/ N
54.3
CP94-11001)× ROC25 感病1/ N
Susceptibility 1/ N
高抗/ Y
High resistance/ Y
28.4
CP84-11981) × 云蔗89-71)
CP84-1198 × Yunzhe 89-7
高抗/ N
High resistance/ N
高抗/ N
High resistance/ N
13.0

图1

基于特异标记R12H16 (A)和9O20-F4 (B)检测甘蔗褐锈病抗病和感病对照种中的Bru1基因 M: 100 bp DNA ladder marker; R: 抗褐锈病对照种R570; S: 感褐锈病对照种粤糖60; CK: 空白对照。"

表3

4个杂交组合分离群体的田间抗性表现与Bru1基因检出情况"

杂交组合
Hybrid combination
样品数
Sample number
发病盛期田间调查
Field investigation at epidemic peak stage
发病末期田间调查
Field investigation at epidemic late stage
未发病率
Uninfected
rate (%)
Bru1检出率
Bru1
detected rate (%)
R12H16和9O20-F4标记检出一致性DCR9MP 未发病率
Uninfected
rate (%)
Bru1检出率
Bru1 detected rate (%)
R12H16和9O20-F4标记检出一致性DCR9M
ROC25×柳城03-1137
ROC25×Liucheng 03-1137
15 0 0 一致Consistent 0 0 一致Consistent
15 100.0 100.0 一致Consistent 86.7 100.0 一致Consistent
ROC25×粤糖84-3
ROC25×Yuetang 84-3
15 0 13.3 一致Consistent 13.3 13.3 一致Consistent
15 100.0 100.0 一致Consistent 60.0 100.0 一致Consistent
CP94-1100×ROC25 15 0 0 一致Consistent 6.7 0 一致Consistent
15 100.0 80.0 一致Consistent 93.3 80.0 一致Consistent
CP84-1198×云蔗89-7
CP84-1198×Yunzhe 89-7
15 0 0 一致Consistent 0 0 一致Consistent
15 100.0 0 一致Consistent 93.3 0 一致Consistent

图2

用R12H16和9O20-F4标记检测组合ROC25 × Yuetang 84-3感病植株中的Bru1基因 M: DNA marker; 1~15: 感病材料; PC: 抗病对照ROC16; NC: 感病对照福农39; CK: 空白对照。"

[1] Avellaneda M C, Hoy J W, Pontif M J.Screening for resistance to sugarcane brown rust with controlled-conditions inoculation. Plant Dis, 2015, 99: 1633-1639
[2] 黄鸿能. 警惕甘蔗锈病在蔗区蔓延. 甘蔗糖业, 1991, (6): 17-19
Huang H N.Maintain vigilance for the spread of rust in sugarcane area. Sugar Canes, 1991, (6): 17-19 (in Chinese with English abstract)
[3] Bernard F A.Considerations of the appearance of sugarcane rust disease in the Dominican Republic. Plant Pathol, 1980, 17: 1382-1386
[4] Purdy L H, Liu L J, Dean J L.Sugarcane rust: a newly important disease.Plant Dis, 1983, 11: 1292-1296
[5] Comstock J C, Shine J M, Raid R N.Effect of rust on sugarcane growth and biomass. Plant Dis, 1992, 76: 175-177
[6] Comstock J C, Shine J M, Raid R N.Effect of early rust infection on subsequent sugarcane growth. Sugar Canes, 1992, 4: 7-9
[7] 李文凤, 王晓燕, 黄应昆, 张荣跃, 单红丽, 尹炯, 申科, 罗志明. 甘蔗抗褐锈病基因Bru1分子检测体系的建立与应用. 植物保护, 2015, 41(02): 120-124
Li W F, Wang X Y, Huang Y K, Zhang R Y, Shan H L, Yin J, Shen K, Lou Z M.Establishment and application of molecular detection system for sugarcane rust resistance gene Bru1. Plant Prot, 2015, 41(02): 120-124 (in Chinese with English abstract)
[8] Daugrois J H, Grivet L, Roques D, Hoarau J Y, Lombard H, Glaszmann J C, D’Hont A. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’.Theor Appl Genet, 1996, 92: 1059-1064
[9] Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau J Y, lismart H T, Girard J C, Raboin L M, Risterucci A M, Grivet L, D’Hont A. Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet, 2004, 108: 759-764
[10] Cunff L L, Garsmeur O, Raboin L M, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann J C, D’Hont A. Diploid / polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n approximately 12× approximately 115). Genetics, 2008, 180: 649-660
[11] Glynn N C, Laborde C, Davidson R W, Irey M S, Glaz B, D’Hont A, Comstock J C. Utilization of a major brown rust resistance gene in sugarcane breeding. Mol Breed, 2013, 31: 323-331
[12] Parco A S, Avellaneda M C, Hale A, Hoy J W, Kimbeng C A, Pontif M J, Gravois K A, Baisakh N.Frequency and distribution of the brown rust resistance geneBru1 and implications for the Louisiana sugarcane breeding programme. Plant Breed, 2014, 133: 654-659
[13] 许莉萍, 陈如凯. 甘蔗锈病抗性指标及甘蔗无性系的抗性评价. 福建农业大学学报, 1996, 25(02): 128-131
Xu L P, Chen R K.The assessment of rust-resistant indexes and rust-resistance in sugarcane clones.J Fujian Agric Univ, 1996, 25(02): 128-131 (in Chinese with English abstract)
[14] 李文凤, 王晓燕, 黄应昆, 张荣跃, 单红丽, 尹炯, 罗志明. 31份甘蔗野生核心种质资源褐锈病抗性鉴定及Bru1基因的分子检测. 作物学报, 2015, 41: 806-812
Li W F, Wang X Y, Huang Y K, Zhang R Y, Shan H L, Yin J, Luo Z M.Identification of brown rust resistance and molecular detection ofBru1 gene in 31 sugarcane wild core germplasm resources. Acta Agron Sin, 2015, 41: 806-812 (in Chinese with English abstract)
[15] Li W F, Wang X Y, Huang Y K, Zhang H Y, Shan H L, Yin J, Luo Z M.Molecular detection ofBru1 gene and identification of brown rust resistance in Chinese sugarcane germplasm. Sugar Tech, 2016, 19: 183-190
[16] Racedo J, Perera M F, Bertani R, Funes C, Gonzalez V, Cuenya M I, D’Hont A, Welin B, Castagnaro A P.Bru1 gene and potential alternative sources of resistance to sugarcane brown rust disease. Euphytica, 2013, 191: 429-436
[17] Tai P Y P, Miller J D, Dean J L. Inheritance of resistance to rust in sugarcane. Field Crops Res, 1981, 4: 261-268
[18] Hogarth D M, Ryan C C, Taylor P W J. Quantitative inheritance of rust resistance in sugarcane.Field Crops Res, 1993, 34: 187-193
[19] 王建南, 林彦铨, 邓祖湖, 陈如凯. 甘蔗对锈病的抗性遗传与育种策略: I. F1群体对锈病抗性的分析. 福建农业大学学报, 1994, 23: 140-144
Wang J N, Lin Y Q, Deng Z H, Chen R K.Inheritance and breeding strategies of resistance to rust in sugarcane: I. An analysis of the resistance to rust of F1 population.J Fujian Agric Univ, 1994, 23: 140-144 (in Chinese with English abstract)
[20] 邓祖湖, 林彦铨. 甘蔗对锈病的抗性遗性与育种策略: II. 亲本组合抗锈病的配合力. 福建农业大学学报, 1994, 23: 249-252
Deng Z H, Lin Y Q.Inheritance and breeding strategies of resistance to rust in sugarcane: II. Combining ability of parental combinations for resistance to rust.J Fujian Agric Univ, 1994, 23: 249-252 (in Chinese with English abstract)
[21] Costet L, Le C L, Royaert S, Raboin L M, Hervouet C, Toubi L, Telismart H, Garsmeur O, Rousselle Y, Pauquet J, Nibouche S, Glaszmann J C, Hoarau J Y, D’Hont A. Haplotype structure aroundBru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet, 2012, 125: 825-836
[22] Aljanabi S M, Parmessur Y, Moutia Y, Saumtally S, Dookun A.Further evidence of the association of a phytoplasma and a virus with yellow leaf syndrome in sugarcane.Plant Pathol, 2001, 50: 628-636
[23] 傅华英, 肖胜华, 刘营航, 孙生仁, 吴小斌, 陈如凯, 高三基. 我国甘蔗锈病病原菌及甘蔗品系抗褐锈病基因Bru1的分子检测. 热带作物学报, 2016, 37: 958-963
Fu H Y, Xiao S H, Liu Y H, Sun S R, Wu X B, Chen R K, Gao S J.Molecular detection of causal pathogens causing rust disease andBru1 resistance gene in elite sugarcane clones. Chin J Trop Crop, 2016, 37: 958-963 (in Chinese with English abstract)
[24] Asnaghi C, D’ Hont A, Glaszmann J C, Rott P.Resistance of sugarcane cultivar R570 toPuccinia melanocephala isolates from different geographic locations. Plant Dis, 2001, 85: 282-286
[25] Mcintyre C L, Whan V A, Croft B, Magarey R, Smith G R.Identification and validation of molecular markers associated with pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches.Mol Breed, 2005, 16: 151-161
[26] Molina B L, Rosales-Longo F, Queme J L.Comparative analysis between phenotype and Bru1 marker for incidence to brown rust in sugarcane. XXVIII ISSCT Congress, 2013, 28: 1-4
[27] 李文凤, 王晓燕, 黄应昆, 张荣跃, 单红丽, 罗志明, 尹炯. 101份中国甘蔗主要育种亲本褐锈病抗性鉴定及Bru1基因的分子检测. 作物学报, 2016, 42: 1411-1416
Li W F, Wang X Y, Huang Y K, Zhang R Y, Shan L H, Luo Z M, Yin J.Identification of resistance to brown rust and molecular detection ofBru1 gene in 101 main sugarcane breeding parents in China. Acta Agron Sin, 2016, 42: 1411-1416 (in Chinese with English abstract)
[28] Zhang J, Sharma A, Yu Q Y, Wang J P, Li L T, Zhu L, Zhang X T, Chen Y Q, Ming R.Comparative structural analysis ofBru1, region homeologs in Saccharum spontaneum, and S. officinarum. BMC Genomics, 2016, 17: 1-20
[29] Glynn N.Screening for resistance to brown rust of sugarcane: use ofBru1 resistance gene prospects and challenges. J Am Soc Sugar Canes Technol, 2012, 32: 82
[1] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[10] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[11] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[12] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[13] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[14] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[15] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!