作物学报 ›› 2018, Vol. 44 ›› Issue (02): 297-305.doi: 10.3724/SP.J.1006.2018.00297
Zhi-Fei XUE, Xia WANG, Fu-Peng LI, Chao-Zhi MA*()
摘要:
甘蓝型油菜为异源四倍体, 基因组结构复杂, 而水稻基因组与油菜基因组具有一定的共线性。本研究利用水稻产量相关基因GS3和Ghd7序列信息, 通过同源克隆方法, 获得了甘蓝型油菜的同源基因BnGS3和BnGhd7。BnGS3有6个外显子, ORF全长666 bp, 编码222个氨基酸。BnGS3蛋白具有水稻GS3四个保守结构域中的VWF结构, 属于A型。BnGhd7含有1个外显子, ORF全长1014 bp, 编码337个氨基酸。BnGhd7蛋白具有N端的B-Box和C端的CCT两个重要的结构域。BnGS3和BnGhd7分别位于A2和A10连锁群, 比较测序得到BnGS3的多态性标记brgs-16及BnGhd7的多态性标记brghd-3和ghd7-7, 其中brghd-3与千粒重(P < 0.05)、ghd7-7与株高(P < 0.01)正相关, ghd7-7与开花期负相关(P < 0.05)。上述结果表明, 利用水稻功能基因序列信息克隆甘蓝型油菜的同源基因是可行的, 为油菜功能基因研究提供了一种有效途径。
[1] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M.Early allopolyploid evolution in the post-neolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953 |
[2] | Nagaharu U.Genome analysis in Brassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389-452 |
[3] | Devos K M, Gale M D.Genome relationships: the grass model in current research.Plant Cell, 2000, 12: 637-646 |
[4] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171 |
[5] | Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation inGhd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767 |
[6] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of theGS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584 |
[7] | Wang C, Chen S, Yu S.Functional markers developed from multiple loci inGS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2011, 122: 905-913 |
[8] | Trick M, Long Y, Meng J, Bancroft I.Single nucleotide polymorphism (SNP) discovery in the polyploidBrassica napus using Solexa transcriptome sequencing. Plant Biotechnol J, 2009, 7: 334-346 |
[9] | 李媛媛, 陈庆芳, 傅廷栋, 马朝芝. 利用SSCP技术分析甘蓝型油菜10个功能基因序列差异. 作物学报, 2012, 38: 43-49 |
Li Y Y, Chen Q F, Fu T D, Ma C Z.Polymorphism analysis of ten functional genes inBrassica napus using SSCP method. Acta Agron Sin, 2012, 38: 43-49 (in Chinese with English abstract) | |
[10] | Thompson J D, Gibson T, Higgins D G.Multiple sequence alignment using ClustalW and ClustalX. In: Current Protocols in Bioinformatics, John Wiley and Sons, 2002. pp 2-3 |
[11] | Shahmuradov I A, Gammerman A J, Hancock J M, Bramley P M, Solovyev V V.PlantProm: a database of plant promoter sequences.Nucl Acids Res, 2003, 31: 114-117 |
[12] | Zdobnov E M, Apweiler R.InterProScan: an integration platform for the signature-recognition methods in InterPro.Bioinformatics, 2001, 17: 847-848 |
[13] | Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R.InterProScan: protein domains identifier.Nucleic Acids Res, 2005, 33: W116-W120 |
[14] | Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L.MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics, 1987, 1: 174-181 |
[15] | Lincoln S E, Daly M J, Lander E S.Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. In: A Whitehead Institute for Biomedical Research Technical Report, 1993. pp 78-79 |
[16] | Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature, 2000, 408:796 |
[17] | Meyerowitz E M.Prehistory and history of Arabidopsis research.Plant Physiol, 2001, 125: 15-19 |
[18] | Zhang Q, Li J, Xue Y, Han B, Deng X W.Rice 2020: a call for an international coordinated effort in rice functional genomics.Mol Plant, 2008, 1: 715-719 |
[19] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of theGS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584 |
[20] | Wang C, Chen S, Yu S.Functional markers developed from multiple loci inGS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2011, 122: 905-913 |
[21] | Abreu J G, Coffinier C, Larraın J, Oelgeschläger M, De Robertis E M. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems.Gene, 2002, 287: 39-47 |
[22] | O’Leary J M, Hamilton J M, Deane C M, Valeyev N V, Sandell L J, Downing A K. Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA.J Biol Chem, 2004, 279: 53857-53866 |
[23] | Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y.Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice.Plant J, 2003, 36: 82-93 |
[24] | Miller T A, Muslin E H, Dorweiler J E.A maize CONSTANS- like gene,conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008, 227: 1377-1388 |
[25] | Li Y, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C.QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust J Agric Res, 2007, 58: 759-766 |
[26] | Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J.Unraveling the complex trait of crop yield with quantitative trait loci mapping inBrassica napus. Genetics, 2009, 182: 851-861 |
[27] | Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T.A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content.Theor Appl Genet, 2006, 114: 67-80 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[3] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[7] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[8] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[9] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[10] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[11] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[12] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[13] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
|