欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 288-296.doi: 10.3724/SP.J.1006.2018.00288

• • 上一篇    下一篇

春季低温对小麦产量和光合特性的影响

王瑞霞1, 闫长生2, 张秀英2, 孙果忠2, 钱兆国1, 亓晓蕾1, 牟秋焕1, 肖世和2,*()   

  1. 1 泰安市农业科学研究院, 山东泰安 271000
    2 中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程, 北京 100081
  • 收稿日期:2017-02-04 接受日期:2017-09-10 出版日期:2018-02-12 网络出版日期:2017-10-27
  • 通讯作者: 肖世和
  • 作者简介:

    ruixiawangli@163.com

  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-03-21), 国家公益性行业科研专项(201203033)和山东省泰安市科研专项(20123034)资助

Effect of Low Temperature in Spring on Yield and Photosynthetic Characteristics of Wheat

Rui-Xia WANG1, Chang-Sheng YAN2, Xiu-Ying ZHANG2, Guo-Zhong SUN2, Zhao-Guo QIAN1, Xiao-Lei QI1, Qiu-Huan MOU1, Shi-He XIAO2,*()   

  1. 1 Tai’an Academy of Agricultural Sciences, Tai’an 271000, Shandong, China;
    2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-02-04 Accepted:2017-09-10 Published:2018-02-12 Published online:2017-10-27
  • Contact: Shi-He XIAO
  • Supported by:
    This study was supported by China Agricultural Research System (CARS-03-21), Special Fund for Agro-scientific Research in the Public Interest (201203033), and Scientific Research of Tai’an City, Shandong Province (20123034).

摘要:

黄淮麦区频发春季低温冻害, 造成小麦减产。为探讨小麦品种对春季低温胁迫响应的生理特点, 确定品种抗寒性鉴定的生理指标, 以泰山6426、泰山4033和济麦22为试验材料, 研究了起身期、拔节期和孕穗期低温处理下不同品种的产量性状、光合生理指标及叶片细胞结构差异。3个品种受低温胁迫后, 观测农艺性状的变化趋势相似, 且年度间有一定的一致性。不同低温处理对株高的影响相对较小, 尤其是起身期低温处理; 不同生育期低温处理, 小麦单株穗数均显著低于对照, 但下降幅度在年度间不完全一致; 单株穗粒数和单株产量随低温处理的推迟呈现显著降低趋势, 尤以孕穗期低温处理的降低幅度最大, 单株穗粒数比对照低90.5%~93.3% (2012—2013)和91.9%~96.6% (2013—2014), 单株产量比对照低87.9%~97.3% (2012—2013)和91.5%~97.8% (2013—2014); 拔节期是低温伤害的第二敏感期, 而起身期低温对小麦产量的影响相对最小。减产的主要原因是穗粒数降低。无论是拔节期还是孕穗期低温处理, 3个品种的叶绿素含量均呈现下降趋势, 下降的幅度因品种而异; 低温胁迫下光合速率、蒸腾速率和叶片气孔导度均显著下降, 胞间CO2浓度均有较大幅度的升高, 3个品种中泰山6426受影响最小。低温胁迫对叶绿素荧光参数也有明显影响, 除泰山6426外, 其余2个品种的Fv/Fm均显著下降。各品种受低温伤害后表皮叶肉细胞破坏严重, 排列趋于松散, 保卫细胞和副卫细胞变形, 气孔变大。本研究结果显示, 光合速率、蒸腾速率、叶片气孔导度、胞间CO2浓度及Fv/Fm可作为评价品种春季抗寒性的生理指标。

关键词: 小麦, 低温, 产量, 光合荧光参数, 抗寒性

Abstract:

Low temperature (LT) stress in spring occurs frequently in the Huang-Huai Rivers Valley, resulting in yield loss of wheat. The objectives of this study were to understand the physiological responses of wheat cultivars to LT and determine suitable physiological indicator(s) for cold-tolerance selection. Three cultivars, Taishan 6426, Taishan 4033, and Jimai 22, were exposed to LT stress at standing, jointing and booting stages, and the yield-related traits, photosynthetic parameters as well as leaf cell structure were compared among different cultivars. The agronomic traits of different cultivars changed in similar trends after LT treatment with the consistent result across years. Plant height received small influence of LT, especially LT at standing stage. In contrast, spike number per plant decreased significantly compared with the control (normal temperature), but the reduced percentage varied across years. Grain number per spike and yield per plant showed significantly declined trends with delaying LT stress, and the maximum decrements were observed in the treatment of LT at booting stage. The grain number per spike was 90.5%-93.3% (2012-2013) and 91.9%-93.6% (2013-2014) lower, and the yield per plant was 87.9%-97.3% (2012-2013) and 91.5%-97.8% (2013-2014) lower in LT treatment at booting than in the control. Booting stage was secondly sensitive to LT in yield, whereas jointing stage was less influenced by LT. Grain yield loss under LT stress mainly resulted from the decrease of grain number per spike. Under LT at jointing or booting stage, the chlorophyll content decreased in the three cultivars, but the decrement varied across cultivars. Moreover, the photosynthetic rate, transpiration rate and stomata conductance decreased significantly and the intercellular CO2 concentration increased greatly in the three cultivars, and those in Taishan 6426 had the minimum variations. LT also had inhibition in chlorophyll fluorescence parameters of wheat. For example, the Fv/Fm value was significantly lower in the treatment of LT at jointing or booting stage than in the control except for Taishan 6426. When exposed to LT stress, leaf epidermic cells were severely damaged, showing their loose arrangement and irregular structures of guard cell and accessory cell. Our results indicate that photosynthetic rate, transpiration rate, stomata conductance, intercellular CO2 concentration and Fv/Fm can be used as indicators to identify tolerance of wheat cultivars to spring coldness.

Key words: wheat, low temperature, yield, photosynthetic and fluorescent parameters, cold resistance

图1

不同时期低温处理对小麦品种产量构成因素的影响 CK: 对照; LT-S: 起身期低温; LT-J: 拔节期低温; LT-B: 孕穗期低温处理。误差线上不同字母表示处理间差异显著(P < 0.05)。"

表1

低温处理后各品种的光合特性差异"

年份
Year
品种
Cultivar
参数
Parameter
CK1 LT-J CK2 LT-B
2012-2013 济麦22
Jimai 22
Chl (mg mg-1) 63.40 55.10** 62.90 54.60**
Pn (μmol m-2 s-1) 17.30 8.44** 10.22 2.35**
E (mmol m-2 s-1) 1.93 0.68** 0.94 0.67*
Cleaf (mmol m-2 s-1) 187.30 73.50** 74.30 48.60**
Cint (μmol mol-1) 97.90 340.50** 260.50 337.30**
泰山6426
Taishan 6426
Chl (mg mg-1) 61.20 54.80** 57.50 54.20
Pn (μmol m-2 s-1) 15.96 5.14** 10.35 2.39**
E (mmol m-2 s-1) 0.65 0.31** 0.76 0.51*
Cleaf (mmol m-2 s-1) 131.10 69.70** 63.40 49.50**
Cint (μmol mol-1) 164.80 353.80** 269.6 356.20**
泰山4033
Taishan 4033
Chl (mg mg-1) 58.40 49.90** 56.10 45.00**
Pn (μmol m-2 s-1) 20.01 5.17** 9.07 1.89**
E (mmol m-2 s-1) 0.60 0.11** 0.60 0.32*
Cleaf (mmol m-2 s-1) 134.50 64.80** 59.00 45.90**
Cint (μmol mol-1) 138.60 375.80** 234.10 354.80**
2013-2014 济麦22
Jimai 22
Chl (mg mg-1) 65.80 57.10** 60.90 57.40*
Pn (μmol m-2 s-1) 26.50 4.77** 27.66 5.54**
E (mmol m-2 s-1) 1.62 0.80** 0.80 0.78
Cleaf (mmol m-2 s-1) 305.90 83.60** 66.20 53.80**
Cint (μmol mol-1) 280.40 341.20** 271.10 289.60**
泰山6426
Taishan 6426
Chl (mg mg-1) 62.30 58.00** 59.90 58.20
Pn (μmol m-2 s-1) 18.07 4.92** 20.79 0.33**
E (mmol m-2 s-1) 1.24 0.81** 0.45 0.34**
Cleaf (mmol m-2 s-1) 193.90 95.40** 58.80 43.00**
Cint (μmol mol-1) 279.00 343.50** 239.80 436.70**
泰山4033
Taishan 4033
Chl (mg mg-1) 57.60 51.80** 57.50 47.10**
Pn (μmol m-2 s-1) 22.45 1.34** 21.56 0.28**
E (mmol m-2 s-1) 1.14 0.56** 1.82 1.27**
Cleaf (mmol m-2 s-1) 180.60 68.60** 57.20 41.30**
Cint (μmol mol-1) 229.10 406.90** 161.30 401.40**

表2

低温处理后各品种荧光特性"

年份
Year
品种
Cultivar
参数
Parameter
CK1 LT-J CK2 LT-B
2012-2013 济麦22
Jimai 22
最大荧光产量 Fm 849.00 682.00** 1121.00 735.00**
最小荧光产量 Fo 203.00 194.00* 239.00 294.00**
光化学猝灭系数 NPQ 1.65 0.95** 1.76 0.83**
PSII最大光化学效率Fv/Fm 0.76 0.72** 0.79 0.60**
泰山6426
Taishan 6426
最大荧光产量 Fm 728.00 707.00** 886.00 647.00**
最小荧光产量 Fo 227.00 231.00 315.00 243.00**
光化学猝灭系数 NPQ 1.37 1.30 1.27 0.90**
PSII最大光化学效率Fv/Fm 0.69 0.67 0.64 0.62
泰山4033
Taishan 4033
最大荧光产量 Fm 673.00 591.00** 771.00 694.00**
最小荧光产量 Fo 210.00 246.00** 281.00 371.00**
光化学猝灭系数 NPQ 0.70 0.48** 0.73 0.97**
PSII最大光化学效率Fv/Fm 0.69 0.58** 0.64 0.51**
2013-2014 济麦22
Jimai 22
最大荧光产量 Fm 1114.00 928.00** 1034.00 735.00**
最小荧光产量 Fo 370.00 358.00* 186.00 294.00**
光化学猝灭系数 NPQ 0.67 0.22** 0.87 0.83**
PSII最大光化学效率Fv/Fm 0.67 0.61** 0.72 0.60**
泰山6426
Taishan 6426
最大荧光产量 Fm 1101.00 1027.00** 794.00 647.00**
最小荧光产量 Fo 508.00 403.00** 287.00 243.00**
光化学猝灭系数 NPQ 0.92 0.57** 0.50 0.90**
PSII最大光化学效率Fv/Fm 0.63 0.61 0.64 0.62
泰山4033
Taishan 4033
最大荧光产量 Fm 2079.00 1419.00** 1076.00 874.00**
最小荧光产量 Fo 257.00 328.00** 345.00 444.00**
光化学猝灭系数 NPQ 0.70 0.62** 0.24 0.30*
PSII最大光化学效率Fv/Fm 0.80 0.69** 0.61 0.49**

图2

拔节期、孕穗期低温处理各品种叶片组织结构变化 CK1和CK2分别为拔节期和孕穗期对照; LT-J和LT-B分别在拔节期和孕穗期低温处理。EP: 表皮; MC: 叶肉细胞; GC: 保卫细胞; SAC: 副卫细胞; STO: 气孔。"

[1] Fang S B, Yang J J, Zhou G S.Change trend distributive characteristics of agrometeorological disasters in China in recent 30 years.J Nat Dis, 2011, 20: 69-73
[2] Wang J F, Zhu Y Y, Liu H P.Main agrometeorological disasters and their impact in recent 28 years in Henan.Meteorol Environ Sci, 2007, 30: 9-11
[3] Cao H M, Shi Z M, Zhou X B, Lei P Z, Dong S G.A review on response of plant to low temperature and its cold resistance.Chin J Agrometeorol, 2010, 31: 310-314
[4] Gana J A, Sutton F, Kenefick D G. cDNA structure and expression patterns of a low-temperature-specific wheat genetacr7. Plant Mol Biol, 1997, 34: 643-650
[5] Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D.Cold acclimation in bryophytes: low- temperature- induced freezing tolerance inPhyscomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 2005, 220: 414-423
[6] 刘艳阳, 李俊周, 陈磊, 崔党群. 低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响. 麦类作物学报, 2006, 26(4): 70-73
Liu Y Y, Li J Z, Chen L, Cui D Q.Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seeding leaves.J Triticeae Crops, 2006, 26(4): 70-73 (in Chinese with English abstract)
[7] 姜丽娜, 张黛静, 宋飞, 刘佩, 樊婷婷, 余海波, 李春喜. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价. 生态学报, 2014, 34: 4251-4261
Jiang L N, Zhang D J, Song F, Liu P, Fan T T, Yu H B, Li C X.Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage.Acta Ecol Sin, 2014, 34: 4251-4261 (in Chinese with English abstract)
[8] 张志伟, 王法宏, 李升东, 冯波, 司纪升, 张宾. 不同类型小麦品种孕穗期低温生理反应及其抗寒性分析.麦类作物学报, 2012, 32: 900-906
Zhang Z W, Wang F H, Li S D, Feng B, Si J S, Zhang B.Analysis on physiological reaction to low temperature at booting stage and their cold resistance of different types of wheat varieties.J Triticeae Crops, 2012, 32: 900-906 (in Chinese with English abstract)
[9] 张军, 鲁敏, 孙树贵, 杜万里, 刘洋, 武军, 陈新宏. 拔节期低温胁迫对小麦生理生化特性和产量的影响. 西北农业学报, 2014, 23(02): 73-79
Zhang J, Lu M, Sun S G, Du W L, Liu Y, Wu J, Chen X H.Changes of physiological and biochemical parameters and grain yield at joining stage of wheat under low temperature stress.Acta Agric Boreali-Occident Sin, 2014, 23(02): 73-79 (in Chinese with English abstract)
[10] 孙金月, 赵玉田, 梁博文, 刘方, 尤勇. HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系. 植物遗传资源学报, 2004, 5: 6-11
Sun J Y, Zhao Y T, Liang B W, Liu F, You Y.Changes of hydroxyproline-rich glyco-protein wheat under cold stress and its relationship to cold resistance. Plant Genet Resour, 2004, 5: 6-11 (in Chinese with English abstract)
[11] Equiza M A.Morphological, anatomical and physiological responses related to differential shoot vs. root growth inhibition at low temperature in spring and winter wheat.Ann Bot, 2001, 87: 67-76
[12] 刘艳阳, 李俊周, 陈磊, 崔党群. 低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响. 麦类作物学报, 2006, 26(4): 70-73
Liu Y Y, Li J Z, Chen L, Cui D Q.Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seed-ling leaves. J Triticeae Crops, 2006, 26(4): 70-73 (in Chinese with English abstract)
[13] Bohn M, Luthje S.Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance.J Plant Physiol, 2007, 164: 146-156
[14] 刘炜, 孙德兰, 王红, 简令成, 张可夫. 2°C低温下抗寒冬小麦与冷敏感春小麦幼苗细胞质膜Ca2+-ATPase活性比较. 作物学报, 2002, 28: 227-229
Liu W, Sun D L, Wang H, Jian L C, Zhao K F.Comparison of Ca2+-ATPase activity in seedling plasmolemma of cold resistant winter wheat vs. cold-sensitive spring wheat under 2°C low temperature.Acta Agron Sin, 2002, 28: 227-229 (in Chinese with English abstract)
[15] 蒋高明. 植物生理生态学. 北京: 高等教育出版社, 2004. pp 46-53
Jiang G M. Plant Ecophysiology.Beijing: Higher Education Press, 2004. pp 46-53 (in Chinese)
[16] Genty B, Briantais J M, Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochim Biophys Acta, 1989, 99: 87-92
[17] Schreiber U, Bilger W, Neubauer C.Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photo- synthesis.Ecol Studies, 1994, 100: 49-70
[18] Krause G H, Weis E.Chlorophyll fluorescence and photosynthesis: the basis. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349
[19] Van Kooten O, Snel J F.The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynth Res, 1990, 25: 147-150
[20] 王晓楠, 付连双, 李卓夫, 杨方, 孙艳丽, 刘灿, 王金伟, 陈禹兴. 低温驯化及封冻阶段不同冬小麦品种叶绿素荧光参数的比较. 麦类作物学报, 2009, 29: 83-88
Wang X N, Fu L S, Li Z F, Yang F, Sun Y L, Liu C, Wang J W, Chen Y X.Comparison of chlorophyll fluorescence parameters between two winter wheat cultivars during cold acclimation and frozen period.J Triticeae Crops, 2009, 29: 83-88 (in Chinese with English abstract)
[21] 高艳, 唐建卫, 殷贵鸿, 韩玉林, 黄峰, 王丽娜. 倒春寒发生时期和次数对冬小麦产量性状的影响. 麦类作物学报, 2015, 35: 687-692
Gao Y, Tang J W, Yin G H, Han Y L, Huang F, Wang L N.Effect of different periods and frequency of late spring coldness on winter wheat yield related traits.J Triticeae Crops, 2015, 35: 687-692 (in Chinese with English abstract)
[22] 王树刚, 王振林, 王平, 王海伟, 黄玮, 武玉国, 尹燕枰. 基于生理指标与籽粒产量关系的小麦品种抗冻性分析. 应用生态学报, 2011, 22: 1477-1484
Wang S G, Wang Z L, Wang P, Wang H W, Huang W, Wu Y G, Yin Y P.Freeze resistance analysis of different wheat cultivars based on relationships between physiological indices and grain yield. Chin J Appl Ecol, 2011, 22: 1477-1484 (in Chinese with English abstract)
[23] Fracheboud Y, Haldimann P, Leipner J, Stamp P.Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize.J Exp Bot, 1999, 50: 1533-1540
[24] Xu C C, Zhang J H.Effect of drought on chlorophyll fluorescence and xanthophylls cycle components in winter wheat leaves with different ages. Acta Phytophysiol Sin, 1999, 25: 29-37
[25] Kratsh H A, Wise R R.The ultrastructure of chilling stress.Plant Cell Environ, 2000, 23: 337-350
[26] 陈思思, 李春燕, 杨景, 徐雯, 朱新开, 郭文善, 封超年. 拔节期低温冻害对扬麦16光合特性及产量形成的影响. 扬州大学学报(农业与生命科学版), 2014, 35(3): 59-64
Chen S S, Li C Y, Yang J, Xu W, Zhu X K, Guo W S, Feng C N.Effect of low temperature at jointing stage on photosynthetic characteristics and yield in wheat cultivar Yangmai 16. J Yangzhou Univ (Agric Life Sci Edn), 2014, 35(3): 59-64 (in Chinese with English abstract)
[27] 简令成. 植物抗寒机理研究的新进展. 植物学通报, 1992, 9(3): 17-22
Jian L C.Advance of the studies on the mechanism of plant cold hardiness.Chin Bull Bot, 1992, 9(3): 17-22 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!