欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 278-287.doi: 10.3724/SP.J.1006.2018.00278

• • 上一篇    下一篇

种植密度对油菜机械收获关键性状的影响

李小勇1, 周敏1, 王涛2, 张兰2, 周广生1, 蒯婕1,*()   

  1. 1 华中农业大学植物科学技术学院, 湖北武汉 430070
    2 沙洋县植物保护站, 湖北沙洋 448200
  • 收稿日期:2017-08-29 接受日期:2017-11-21 出版日期:2018-02-12 网络出版日期:2017-12-12
  • 通讯作者: 蒯婕
  • 作者简介:

    307262107@qq.com

  • 基金资助:
    本研究由国家科技支撑项目(2014BAD11B03), 国家现代农业产业技术体系建设专项(NYCYTC-00510)和高校自主科技创新基金(2013PY001)资助

Effects of Planting Density on the Mechanical Harvesting Characteristics of Semi-winter Rapeseed

Xiao-Yong LI1, Min ZHOU1, Tao WANG2, Lan ZHANG2, Guang-Sheng ZHOU1, Jie KUAI1,*()   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2 Shayang Plant Protection Station, Shayang 448200, Hubei, China
  • Received:2017-08-29 Accepted:2017-11-21 Published:2018-02-12 Published online:2017-12-12
  • Contact: Jie KUAI
  • Supported by:
    This study was supported by the National Key Technology R&D Program of China (2014BAD11B03), the China Agriculture Research System (NYCYTC-00510), and the Fundamental Research Funds for Central Universities (2013PY001).

摘要:

油菜机械化生产中, 茎秆倒伏和角果开裂是引起产量损失的主要因素。为探究密度对油菜机械化关键性状的影响, 以中双11、华油杂9号为材料, 设置4个密度(15万株 hm-2、30万株 hm-2、45万株 hm-2和60万株 hm-2), 测定产量构成、倒伏指数及抗裂角指数相关指标。结果表明, (1)不同密度下, 群体有效角果数, 每角粒数差异显著, 2个品种产量均在45万株 hm-2时最大; (2)随密度增加, 油菜根颈粗变细, 茎秆倒伏指数增加, 增加了倒伏风险; 在低密度(15万株 hm-2和30万株 hm-2)下, 茎秆临近冠层部位最易倒伏, 在高密度(45万株 hm-2和60万株 hm-2)下, 茎秆中部及中部偏上部位倒伏指数较大, 即与低密度相比, 高密度油菜茎秆倒伏发生部位降低; (3)分枝抗裂角指数均小于主茎抗裂角指数, 且随分枝高度降低呈先增加后降低趋势。不同品种油菜主茎抗裂角指数对密度响应存在差异: 中双11随密度增加逐渐降低, 在15万株hm-2下最大, 华油杂9号则随密度增大呈先增后降趋势, 在30万株 hm-2下最大。角果发育初期至成熟期含水量下降速率与抗裂角指数极显著负相关, 且相关系数最大, 表明该指标是密度影响抗裂角指数的最关键因素。

关键词: 油菜, 种植密度, 产量, 裂角, 倒伏

Abstract:

Two canola varieties (Zhongshuang 11 and Huayouza 9) with four planting densities (15 × 104, 30 × 104, 45 × 104, and 60 × 104 plants ha-1) were used to evaluate their effects on yield, lodging and pod shattering resistance index (PSRI). With the increase of plant density, effective pods per hectare increased, resulting in increasing yield. The highest yield was observed at density of 45 × 104 plants ha-1 for both of the two varieties. With the increase of plant density, the root crown diameter decreased which led lodging index to be increased. Under the densities of 15 × 104 and 30 × 104 plants ha-1, the part of stem below canopy had the highest lodging index, while under the densities of 30 × 104 and 45 × 104 plants ha-1, the central of stem and the upper part of middle stem had the highest lodging index, indicating that the lodging region was lower than under low plant density. The PSRI of branches was smaller than that of main stems, with a tendency of increasing firstly and then decreasing with decreasing branch height. The PSRI of main stem of the two varieties had different responses to increasing density, that was decreasing in Zhongshuang 11 while increasing firstly and then decreasing in Huayouza 9, with a highest PSRI under 300 000 plants ha-1. The water declining rate of pod wall from early pod development to pod maturity had highly significant and negative correlation with pod shattering resistance, indicating that this index is most important for density effects on pod shattering.

Key words: rapeseed (Brassica napus L.), planting density, yield, pod shattering, lodging

表1

密度对油菜产量及产量构成的影响"

年份
Year
品种
Variety
密度
Density
单株有效角果数Effective pod number
per plant
每角果粒数
Number of seeds
per pod
千粒重
1000-seed weight (g)
实收产量
Yield
(kg hm-2)
2014-2015 中双11
Zhongshuang 11
D1 164.5 a 22.7 a 4.30 a 2381.3 c
D2 126.4 b 22.3 b 4.34 a 2969.3 b
D3 88.4 c 20.4 c 4.27 ab 3158.5 a
D4 63.4 d 20.0 d 4.18 b 3029.1 b
华油杂9号
Huayouza 9
D1 193.5 a 25.8 a 3.01 b 2521.3 d
D2 132.8 b 24.4 b 3.10 ab 2910.7 c
D3 108.5 c 23.4 c 3.12 ab 3514.4 a
D4 86.0 d 23.5 c 3.16 a 3076.0 b
2015-2016 中双11
Zhongshuang 11
D1 170.5 a 23.1 a 4.48 b 2626.3 c
D2 108.1 b 22.7 b 4.52 a 2938.9 b
D3 95.0 c 21.6 c 4.34 c 3255.9 a
D4 66.4 d 21.2 d 4.26 d 3042.6 b
华油杂9号
Huayouza 9
D1 216.5 a 27.4 a 2.95 c 2691.8 d
D2 123.0 b 26.1 b 2.99 bc 3094.4 b
D3 107.0 c 25.1 c 3.04 ab 3358.3 a
D4 79.8 d 24.6 d 3.11 a 2916.9 c
方差分析 Variance analyses
年份(Y) ** ** NS **
品种(V) ** ** ** **
密度(D) ** ** ** **
Y×V ** NS ** **
Y×D ** NS NS **
V×D NS NS NS **
Y×V×D NS NS NS **

表2

密度对油菜成熟期农艺性状的影响"

年份
Year
品种
Variety
密度
Density
根颈粗
Root crown diameter (mm)
株高
Plant height
(cm)
分枝高
Branch height
(cm)
分枝数
Branch number
结角起点
Pod starting point (cm)
2014-2015 中双11
Zhongshuang 11
D1 20.81 a 168.17 a 62.00 c 6.0 a 96.73 a
D2 16.79 b 162.50 ab 76.43 b 4.3 ab 96.73 a
D3 14.97 c 156.99 bc 82.57 ab 4.2 bc 97.47 a
D4 12.35 d 151.53 c 90.33 a 2.5 c 96.60 a
华油杂9号Huayouza 9 D1 16.08 a 164.84 a 58.51 c 6.3 a 85.61 a
D2 14.34 b 155.83 ab 68.87 b 4.1 b 83.97 a
D3 13.35 b 152.32 b 76.62 ab 3.3 c 82.81 a
D4 11.22 c 147.19 b 81.75 a 2.9 c 82.41 a
2015-2016 中双11
Zhongshuang 11
D1 21.28 a 170.00 a 63.77 c 6.3 a 99.50 a
D2 16.05 b 167.23 ab 78.03 b 4.3 b 104.33 a
D3 13.97 bc 164.50 ab 86.43 ab 3.7 b 104.80 a
D4 12.90 c 162.33 b 97.43 a 1.7 c 105.00 a
华油杂9号Huayouza 9 D1 19.69 a 173.67 a 54.60 c 7.7 a 94.57 a
D2 14.66 b 170.53 ab 81.90 b 5.3 b 98.50 a
D3 13.22 c 165.50 bc 82.67 b 5.3 b 99.67 a
D4 11.94 d 158.17 c 90.00 a 4.3 c 97.83 a
方差分析 Variance analyses
年份(Y) ** ** ** ** **
品种(V) ** ** ** * **
密度(D) ** ** ** ** NS
Y×V ** NS NS ** *
Y×D ** NS * * **
V×D NS NS NS ** NS
Y×V×D NS NS NS NS NS

图1

不同密度下油菜倒伏发生部位 D1、D2、D3和D4分别表示种植密度为15×104、30×104、45×104和60×104株hm-2。"

表3

密度对油菜茎秆不同部位倒伏指数的影响"

年份
Year
品种
Variety
密度
Density
No.1 No.2 No.3 No.4 均值
Average
2014-2015 中双11
Zhongshuang 11
D1 0.809 b 0.846 b 0.914 c 1.025 a 0.899
D2 0.876 b 1.040 b 1.078 bc 1.160 a 1.039
D3 0.922 b 0.973 b 1.186 b 1.089 a 1.043
D4 1.278 a 1.597 a 1.536 a 1.273 a 1.421
华油杂9号
Huayouza 9
D1 0.701 b 0.742 c 0.786 b 0.909 b 0.785
D2 0.809 b 0.991 b 1.073 ab 0.872 b 0.936
D3 1.224 a 1.656 a 1.335 a 1.051 a 1.317
D4 1.476 a 1.484 a 1.321 a 1.101 a 1.346
2015-2016 中双11
Zhongshuang 11
D1 0.862 b 0.954 c 1.050 c 1.113 b 0.995
D2 1.618 a 1.805 b 1.922 b 2.126 a 1.868
D3 1.665 a 1.943 b 2.281 a 1.908 a 1.949
D4 1.829 a 2.372 a 2.248 a 2.178 a 2.157
华油杂9号
Huayouza 9
D1 1.001 a 1.129 b 1.208 b 1.288 a 1.157
D2 1.066 a 1.089 b 1.215 b 1.321 a 1.173
D3 1.371 a 1.528 a 1.727 a 1.522 a 1.537
D4 1.086 a 1.349 ab 1.228 b 1.148 a 1.203
方差分析 Variance analyses
年份(Y) ** ** ** **
品种(V) ** ** ** **
密度(D) ** ** ** **
Y×V ** ** ** **
Y×D ** NS ** **
V×D * ** ** **
Y×V×D ** ** ** **

图2

密度对油菜角果抗裂角指数的影响 D1、D2、D3和D4分别表示种植密度为15×104、30×104、45×104和60×104株hm-2; 横坐标轴中间的“0”表示主茎, “1~7”表示从上部向下部的第1到第7分枝。"

图3

密度对油菜角果壳干物质(A)和含水量(B)的影响 D1、D2、D3和D4分别表示种植密度为15×104、30×104、45×104和60×104株hm-2。"

表4

抗裂角指数与角果壳干重、含水量相关性分析"

品种
Variety
果壳重
Pod wall
dry weight
角果壳含水量 Pod wall water content
花后天数 Days after flowering Δ含水量
Δ water content
21 d 28 d 35 d 42 d 49 d 56 d
中双11
Zhongshuang 11
0.751** -0.065 -0.45 -0.38 0.382 0.653 0.971** -0.968**
华油杂9号
Huayouza 9
0.581** 0.110 -0.73 -0.71 0.895* 0.660 0.900** -0.968**
[1] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8
Shen J X, Fu T D.Rapeseed production, improvement and edible oil supply in China.J Agric Sci Tech, 2011, 13(1): 1-8 (in Chinese with English abstract)
[2] 马征, 李耀明, 徐立章. 油菜茎秆弹性力学特性试验研究. 农机化研究, 2016, 38(5): 187-191
Ma Z, Li Y M, Xu L Z.Experimental research of elastic mechanics of rape stalks.J Agric Mech Res, 2016, 38(5): 187-191 (in Chinese with English abstract)
[3] 周广生, 左青松, 廖庆喜, 吴江生, 傅廷栋. 我国油菜机械化生产现状、存在问题及对策. 湖北农业科学, 2013, 52: 2153-2157
Zhou G S, Zuo Q S, Liao Q X, Wu J S, Fu T D.Mechanical production status, existing problems and strategy discussion of rapeseed in China.Hubei Agric Sci, 2013, 52: 2153-2157 (in Chinese with English abstract)
[4] 孙盈盈. 不同栽培措施对油菜产量及抗倒性的影响. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Sun Y Y.Effect of Different Cultivation Measures on Rapeseed Yield and Lodging Resistance. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2016 (in Chinese with English abstract)
[5] 王婷, 暨淑仪, 吴鸿. 油菜角果开裂区结构分化对果实开裂的作用. 作物学报, 2012, 38: 563-569
Wang T, Ji S Y, Wu H.Effect of structural differentiation of fruit dehiscence zone on pod dehiscence in oilseed rape.Acta Agron Sin, 2012, 38: 563-569 (in Chinese with English abstract)
[6] 文雁成, 傅廷栋, 涂金星, 马朝芝, 沈金雄, 张书芬. 甘蓝型油菜抗裂角品种(系)的筛选与分析. 作物学报, 2008, 34: 163-166
Wen Y C, Fu T D, Tu J X, Ma C Z, Shen J X, Zhang S F.Screening and analysis of resistance to silique shattering in Rape (Brassica napus L.). Acta Agron Sin, 2008, 34: 163-166 (in Chinese with English abstract)
[7] Pinthus M J.Lodging in Wheat, Barley, and Oats: the phenomenon, its causes, and preventive measures.Adv Agron, 1974, 25: 209-263
[8] Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E.Genetic variation for pod shatter resistance among lines of oilseed rape developed from syntheticB. napus. Field Crops Res, 1998, 58: 153-165
[9] Kadkol G P, Macmillan R H, Burrow R P, Halloran G M.Evaluation of Brassica genotypes for resistance to shatter: I. Development of a laboratory test.Euphytica, 1984, 33: 63-73
[10] Price J S, Hobson R N, Neale M A, Bruce D M.Seed losses in commercial harvesting of oilseed rape.J Agric Eng Res, 1996, 65: 183-191
[11] Tys J.Evaluation of the mechanical properties of winter rape siliques in respect to their susceptibility to cracking. J Pub Admin & Policy Res, 1985, 115: e512-517
[12] 刘唐兴, 官春云, 雷冬阳. 作物抗倒伏的评价方法研究进展. 中国农学通报, 2007, 23(5): 203-206
Liu T X, Guan C Y, Lei D Y.The research progress on evaluation methods of lodging resistance in crops.Chin Agric Sci Bull, 2007, 23(5): 203-206 (in Chinese with English abstract)
[13] 田保明, 杨光圣, 曹刚强, 舒海燕. 农作物倒伏及其影响因素分析. 中国农学通报, 2006, 22(4): 163-167
Tian B M, Yang G S, Cao G Q, Shu H Y.The performent of lodging and root cause analysis for lodging resistance in crops.Chin Agric Sci Bull, 2006, 22(4): 163-167 (in Chinese with English abstract)
[14] 周晓彬, 肖数数, 王莹莹, 冯星星, 王德鹏, 唐浩月, 范玉刚, 龚德平. 油菜倒伏问题研究进展. 湖北农业科学, 2011, 50: 4105-4108
Zhou X B, Xiao S S, Wang Y Y, Feng X X, Wang D P, Tang H Y, Fan Y G, Gong D P.Research progress of rapeseed lodging.Hubei Agric Sci, 2011, 50: 4105-4108 (in Chinese with English abstract)
[15] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376-381
Gu H, Qi C K.Genetic analysis of lodging resistance with mixed model of major gene plus polygene inBrassica napus L. Acta Agron Sin, 2008, 34: 376-381 (in Chinese with English abstract)
[16] Morgan C L, Ladbrooke Z L, Bruce D M, Child R, Arthur A E.Breeding oilseed rape for pod shattering resistance. J Agric Sci, 2000, 135: 347-359
[17] 刘定富, 刘后利. 甘蓝型油菜数量性状遗传变异的研究. 遗传学报, 1987, 14: 31-36
Liu D F, Liu H L.Genetic variabilities of some quantitative characters inBrassica napus L. Acta Genet Sin, 1987, 14: 31-36 (in Chinese with English abstract)
[18] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44: 3529-3536
Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L.Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Sci Agric Sin, 2011, 44: 3529-3536 (in Chinese with English abstract)
[19] 马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31: 180-184
Ma N, Zhang C L, Li J, Li G M.Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2009, 31: 180-184 (in Chinese with English abstract)
[20] 廖桂平, 官春云. 不同播期对不同基因型油菜产量特性的影响. 应用生态学报, 2001, 12: 853-858
Liao G P, Guan C Y.Effect of seeding date on yield characteristics of different rapeseed (Brassica napus) genotypes. Chin J Appl Ecol, 2001, 12: 853-858 (in Chinese with English abstract)
[21] Diepenbrock W.Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49
[22] Jie K, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G.The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835
[23] Zuber M S, Grogan C O.A new technique for measuring stalk strength in corn1.Crop Sci, 1961, 1: 378-380
[24] 陈红琳, 陈尚洪, 沈学善, 蒋梁材, 刘定辉. 种植密度对四川盆地丘陵区移栽油菜农艺性状和产量的影响. 中国农学通报, 2012, 28(30): 142-145
Chen H L, Chen S H, Shen X S, Jiang L C, Liu D H.Effects of different density to the agronomic traits and yield of transplanting rapeseed in the hilly area of Sichuan Basin.Chin Agric Sci Bull, 2012, 28(30): 142-145 (in Chinese with English abstract)
[25] Novacek M J, Mason S C, Galusha T D, Yaseen M.Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013, 105: 268-276
[26] Jie K, Sun Y, Zhou M, Zhang P, Zuo Q, Wu J, Zhou G.The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98
[27] 孟倩, 董军刚, 黄伟男, 段海峰, 张博, 解芳宁, 董振生. 密度和播期对甘蓝型油菜角果抗裂性的影响. 西北农业学报, 2013, 22(11): 37-41
Meng Q, Dong J G, Huang W N, Duan H F, Zhang B, Xie F N, Dong Z S.Effects of planting density and sowing date on the shatter resistance ofBrassica napus Pods. Acta Agric Boreali- occident Sin, 2013, 22(11): 37-41 (in Chinese with English abstract)
[28] 宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43: 1800-1806
Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y.Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high density planting. Sci Agric Sin, 2010, 43: 1800-1806 (in Chinese with English abstract)
[29] 浦惠明, 傅寿仲, 戚存扣, 张洁夫, 伍贻美, 高建芹, 陈新军. 不同种植密度对杂交油菜若干性状的影响. 江苏农业科学, 2001, (3): 28-30
Pu H M, Fu S Z, Qi C K, Zhang J F, Wu Y M, Gao J Q, Chen X J.Influence of planting density on several characters of hybrid rape.Jiangsu Agric Sci, 2001, (3): 28-30 (in Chinese with English abstract)
[30] 王锐, 李京, 胡立勇. 不同株行配置与密度对油菜产量的影响. 中国农学通报, 2011, 27(16): 273-277
Wang R, Li J, Hu L Y.Effects of different row spacing and planting density on yield of rapeseed.Chin Agric Sci Bull, 2011, 27(16): 273-277 (in Chinese with English abstract)
[31] 曾宇, 雷雅丽, 李京, 胡立勇. 氮、磷、钾用量与种植密度对油菜产量和品质的影响. 植物营养与肥料学报, 2012, 18: 146-153
Zeng Y, Lei Y L, Li J, Hu L Y.Effects of application amounts of nitrogen, phosphate and potassium and planting density on yield and quality of rapeseed.Plant Nutr Fert Sci, 2012, 18: 146-153 (in Chinese with English abstract)
[32] 郑本川, 张锦芳, 李浩杰, 蒲晓斌, 崔成, 柴靓, 蒋俊, 牛应泽, 蒋梁材. 甘蓝型油菜生育期天数与产量构成性状的相关分析. 中国油料作物学报, 2013, 35: 240-245
Zheng B C, Zhang J F, Li H J, Pu X B, Cui C, Chai L, Jiang J, Niu Y Z, Jiang L C.Correlation between duration of growth periods and yield components of Brassica napus L. Chin J Oil Crop Sci, 2013, 35: 240-245 (in Chinese with English abstract)
[33] 董晓芳, 田保明, 姚永芳, 张艳, 张京涛, 孙弋媛, 刘云霞, 申龙, 苏彦华. 密度对油菜品种机械化收获特性的影响. 中国农学通报, 2012, 28(3): 71-74
Dong X F, Tian B M, Yao Y F, Zhang Y, Zhang J T, Sun Y Y, Liu Y X, Shen L, Su Y H.Effects of the density on the characteristics of the mechanization harvest inBrassica napus L. Chin Agric Sci Bull, 2012, 28(3): 71-74 (in Chinese with English abstract)
[34] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33: 1688-1695
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M.Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007, 33: 1688-1695 (in Chinese with English abstract)
[35] 刘启波. 不同栽培密度对油菜产量的影响. 现代农业科技, 2012, (18): 16-16
Liu Q B.Effect of plant density on rapeseed yield.Mod Agric Sci Tech, 2012, (18): 16-16 (in Chinese with English abstract)
[36] 刘后利. 油菜育种研究进展. 作物杂志, 1988, (3): 5-7
Liu H L.Research advances on rapeseed breeding.Crops, 1988, (3): 5-7 (in Chinese)
[37] Jie K, Sun Y, Guo C, Zhao L, Zuo Q, Wu J, Zhou G.Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics.Field Crops Res, 2017, 200: 88-97
[38] Jie K, Yang Y, Sun Y, Zhou G, Zuo Q, Wu J, Ling X.Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance inBrassica napus L. Field Crops Res, 2015, 180: 10-20
[39] 刘婷婷, 孙盈盈, 曹石, 杨阳, 吴莲蓉, 左青松, 吴江生, 周广生. 油菜抗裂角性状研究进展. 作物杂志, 2014, (3): 5-9
Liu T T, Sun Y Y, Cao S, Yang Y, Wu L R, Zuo Q S, Wu J S, Zhou G S.Research advances on traits of resistance to pod shattering in rapeseed.Crops, 2014, (3): 5-9 (in Chinese with English abstract)
[40] 刘婷婷, 蒯婕, 孙盈盈, 杨阳, 吴莲蓉, 吴江生, 周广生. 氮、磷、钾肥用量对油菜角果抗裂性相关性状的影响. 作物学报, 2015, 41: 1416-1425
Liu T T, Kuai J, Sun Y Y, Yang Y, Wu L R, Wu J S, Zhou G S.Effects of N, P, and K fertilizers on silique shatter resistance and related traits of rapeseed.Acta Agron Sin, 2015, 41: 1416-1425 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!