欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 324-331.doi: 10.3724/SP.J.1006.2018.00324

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗咪唑啉酮类除草剂基因ALS功能标记的开发与应用

王芳权1,2(), 杨杰1,2,*(), 范方军1,2, 李文奇1,2, 王军1,2, 许扬1,2, 朱金燕1,2, 费云燕1, 仲维功1,2   

  1. 1江苏省农业科学院粮食作物研究所 / 国家水稻改良中心南京分中心 / 江苏省优质水稻工程技术研究中心, 江苏南京 210014
    2扬州大学 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2017-07-19 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-11
  • 通讯作者: 杨杰
  • 作者简介:

    wfqjaas@163.com, Tel: 025-84390320

  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100400-3), 江苏省现代农业重点研发项目(BE2015355), 江苏省农业科学院探索性项目(ZX(17)2014), 江苏省自然科学基金面上项目(BK20171326)和国家公益性行业科研专项项目(201303102)资助

Development and Application of the Functional Marker for Imidazolinone Herbicides Resistant ALS Gene in Rice

Fang-Quan WANG1,2(), Jie YANG1,2,*(), Fang-Jun FAN1,2, Wen-Qi LI1,2, Jun WANG1,2, Yang XU1,2, Jin-Yan ZHU1,2, Yun-Yan FEI1, Wei-Gong ZHONG1,2   

  • Received:2017-07-19 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-11
  • Contact: Jie YANG
  • Supported by:
    This study was supported by the National Key Research and Development Program (2017YFD0100400-3), the Jiangsu Province Key Research and Development Program (Modern Agriculture, BE2015355), the Exploratory Project of the Jiangsu Academy of Agricultural Sciences (ZX(17)2014), the Natural Science Foundation of Jiangsu Province of China (BK20171326), and the Special Fund for Scientific Research on Public Causes (201303102).

摘要:

选育和利用抗除草剂水稻品种具有重要的生产实践意义。通过筛选水稻资源, 发现了抗除草剂材料金粳818, 其ALS基因编码区第1880位碱基存在一个由G到A的碱基变异, 导致丝氨酸突变为天冬酰胺, 从而具有除草剂抗性。本研究基于该位点的碱基变异, 设计了11条等位基因特异PCR (allelic-specific PCR, AS-PCR)引物, 经过优化筛选, 获得两个引物组合F1N (S1/S9)和F1M (S1/S10), 将该标记命名为AS-ALS。利用F2群体及其亲本和杂交种, 结合AS-ALS标记检测和除草剂抗性分析, 结果表明感除草剂ALS-G等位基因型只能被F1N引物对有效扩增, 抗除草剂ALS-A等位基因型只能被F1M引物对有效扩增, 而杂合基因型能同时被两对引物F1N和F1M扩增, ALS-A纯合或杂合等位基因型都表现抗除草剂, ALS-G纯合基因型表现感除草剂。因此本研究开发的标记能有效区分除草剂抗性基因的3种基因型, 基因型与表型完全对应。该标记用于回交育种, 可以选择ALS-A杂合基因型单株, 剔除ALS-G纯合等位基因型, 在自交的F2保留ALS-A纯合基因型单株, 连续自交, 能快速获得除草剂抗性稳定的水稻材料。该除草剂抗性基因的功能标记还可用于咪唑啉酮类除草剂抗性资源筛选。

关键词: 水稻, 除草剂, 乙酰乳酸合成酶, ALS基因, 功能标记

Abstract:

Breeding and utilization of herbicide resistant rice are significant to rice production. By screening the rice germplasm, we found the herbicide resistant material “Jinjing 818”. An SNP mutation G to A was present in Acetolactate synthase (ALS) gene at 1880 bp position, leading to the alteration from serine (S, AGT) to asparagine (N, AAT), which confers herbicide resistance. In this study, 11 allelic-specific PCR (AS-PCR) primers were designed based on the functional mutation. After optimized these primers, we obtained two primer combinations F1N (S1/S9) and F1M (S1/S10), named AS-ALS marker. Using this marker detected the genetic population, its parents, F1 hybrid, F2 and also rice collections, inbred lines, showing that the herbicide susceptibleness allelic ALS-G could be amplified by F1N, the herbicide resistance allelic ALS-A by F1M, and heterozygous genotype by F1N and F1M simultaneously. The genotype of those tested materials perfectly matched with the phenotype of herbicide resistance or susceptibleness. Aided by AS-ALS marker selection, the homozygous ALS-A pedigrees in multi-generation backcross or self-cross showed stable herbicide resistance. Therefore, the allelic-specific PCR functional marker AS-ALS can be used in herbicide breeding efficiently, also screening herbicide resistant rice germplasm. In conclusion, the AS-ALS marker developed in this research is inexpensive and effective in breeding practice.

Key words: rice (Oryza sativa L.), herbicide, acetolactate synthase, ALS gene, functional marker

表1

ALS基因分子标记设计"

编号
No.
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
S1 AS-ALS-F1 GAGGCAATCATCGCTACTGG
S2 AS-ALS-R1-1 ACAAACCTAGACAGCAGGAAG
S3 AS-ALS-R1-2 CTCTTTATGGGTCATTCAGGTC
S4 AS-ALSn-F2-1 TGTGCTGCCTATGATCCtgAG
S5 AS-ALSn-F2-2 TGTGCTGCCTATGATCCCtAG
S6 AS-ALSm-F2-1 TGTGCTGCCTATGATCCCgAA
S7 AS-ALSm-F2-2 CATGTGCTGCCTATGATCtCgAA
S8 AS-ALSn-R2-1 TGTCCTTGAATGaGCCCCtAC
S9 AS-ALSn-R2-2 TGTCCTTGAATGCGCCCCtAC
S10 AS-ALSm-R2-1 TGTCCTTGAATGCGCCCCtAT
S11 AS-ALSm-R2-2 TGTCCTTGAATGCGCCCttAT

图1

ALS基因序列比对图日本晴的ALS基因序列GenBank登录号为NC_008395.2, StrawhullS的ALS基因序列GenBank登录号为AY885673.1。"

图2

不同引物组合对日本晴和金粳818的PCR扩增结果 A为日本晴, B为金粳818; M为DL2000标记, 由大到小分别为2000、1000、750、500、250和100 bp; 泳道1~11分别为S4/S2、S4/S3、S5/S2、S5/S3、S6/S2、S6/S3、S7/S2、S7/S3、S1/S8、S1/S9和S1/S10。"

图3

引物组合提高退火温度优化后PCR扩增结果 A为日本晴, B为金粳818; M为DL2000标记, 由大到小分别为2000、1000、750、500、250和100 bp; 泳道1~6分别为S4/S2、S4/S3、S5/S2、S5/S3、S1/S9和S1/S10。"

图4

AS-ALS标记检测部分F2单株及表型对应情况M为DL2000 DNA标记(由大到小分别为2000、1000、750、500、250和100 bp), P1为金粳818, P2为南粳9108, F1为南粳9108/粳9108/金粳818杂交种, 1~21为F2单株; R表示单株表现抗除草剂, S表示单株表现感除草剂。"

图5

喷施除草剂后F2植株表型1为金粳818, 2为南粳9108, 3为南粳9108/金粳818杂交种, 4为ALS-A纯合基因型后代, 5为杂合基因型后代, 6为ALS-G纯合基因型后代。"

图6

用AS-ALS标记检测高代品系及表型对应情况 M为DL2000 DNA标记(由大到小分别为2000、1000、750、500、250和100 bp), P1为金粳818, P2为南粳9108, 1~22为BC3F3群体单株; R表示单株表现抗除草剂, S表示单株表现感除草剂。"

图7

利用AS-ALS功能标记筛选水稻资源 M为DL2000标记, 由大到小分别为2000、1000、750、500、250和100 bp; 泳道1~24分别为金粳818、日本晴、南粳40、南粳41、南粳44、南粳45、南粳46、南粳49、南粳9108、南粳5055、淮稻5号、苏秀867、武运粳21、武运粳24、武运粳27、徐稻3号、徐稻8号、镇稻88、镇稻99、连粳7号、常农粳7号、9311、IR36和南京16。"

[1] Song Z P, Lu B L, Zhu Y G, Chen J K.Gene flow from cultivated rice to the wild speciesOryza rufipogon under experimental field conditions. New Phytol, 2003, 157: 657-665
[2] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47: 1273-1289
Zhang H C, Gong J L.Research status and development discussion on high-yielding agronomy of mechanized planting rice in China.Sci Agric Sin, 2014, 47: 1273-1289 (in Chinese with English abstract)
[3] 石磊. 咪唑乙烟酸与咪唑喹啉酸除草剂. 农药市场信息, 2003, (7): 29
Shi L.Imazethapyr and imazaquin herbicides.Pesticide Markert News, 2003, (7): 29 (in Chinese)
[4] Gaston S, Zabalza A, González E M, Arrese-Igor C, Aparicio-Tejo P M, Royuela M. Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants.Physiol Plant, 2002, 114: 524-532
[5] Wright T R, Bascomb N F, Sturner S F, Penner D.Biochemical mechanism and molecular basis of ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci, 1998, 46: 13-23
[6] Tranel P J, Wright T R.Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci, 2002, 50: 700-712
[7] Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles S B.A novel amino acid substitution Ala-22-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides.Pest Manag Sci, 2012, 68: 1164-1170
[8] Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S.Molecular breeding of a novel herbicide-tolerant rice by gene targeting.Plant J, 2007, 52: 157-166
[9] Powles S B, Yu Q.Evolution in action: plants resistant to herbicides.Annu Rev Plant Biol, 2010, 61: 317-347
[10] Rajguru S N, Burgos N R, Shivrain V K, Stewart J M.Mutations in the red riceALS gene associated with resistance to imazethapyr. Weed Sci, 2005, 53: 567-577
[11] Shoba D, Raveendran M, Manonmani S, Utharasu S, Dhivyapriya D, Subhasini G, Valarmathi R, Grover N, Krishnan S G, Singh A K, Jayaswal P, Kale P, Ramkumar M K, Mithra S V, Mohapatra T, Singh K, Singh N K, Sarla N, Sheshshayee M S, Kar M K, Robin S, Sharma R P.Development and genetic characterization of a novel herbicide (imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice, 2017, 10(1): 10
[12] Goulart I C G R, Matzenbacher F O, Merotto A. Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations.Weed Res, 2012, 52: 224-232
[13] Goulart I C, Borba T C, Menezes V G, Merotto Jr A.Distribution of weedy red rice (Oryza sativa) resistant to imidazolinone herbicides and its relationship to rice cultivars and wild Oryza species. Weed Sci, 2014: 62: 280-293
[14] Légère A, Stevenson F C, Beckie H J, Warwick S I, Johnson E N, Hrynewich B, Lozinski C.Growth characterization of Kochia (Kochia scoparia) with substitutions at Pro197 or Trp574 conferring resistance to acetolactate synthase-inhibiting herbicides. Weed Sci, 2013, 61: 267-276
[15] 仲维功, 杨杰, 陈志德, 汤陵华, 王才林, 施积文, 肖跃成. 江苏扬中“杂草稻”的籼粳分类. 江苏农业学报, 2006, 22: 238-242
Zhong W G, Yang J, Chen Z D, Tang L H, Wang C L, Shi J W, Xiao Y C.Classification of a ‘weedy rice’ in Yangzhong city of Jiangsu Province.Jiangsu J Agric Sci, 2006, 22: 238-242 (in Chinese with English abstract)
[16] Carlson T P, Webster E P, Salassi M E, Hensley J B, Blouin D C.Imazethapyr plus propanil programs in imidazolinone resistant rice.Weed Technol, 2011, 25: 204-211
[17] Carlson T P, Webster E P, Salassi M E, Bond J A, Hensley J B, Blouin D C.Economic evaluations of imazethapyr rates and timings on rice.Weed Technol, 2012, 26: 24-28
[18] Webster E P, Masson J A.Acetolactate synthase-inhibiting herbicides on imidazolinone tolerant rice.Weed Sci, 2001, 49: 652-657
[19] Chaleff R S, Mauvais C J.Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants.Science, 1984, 224: 1443-1446
[20] Lee Y T, Duggleby R G.Identification of the regulatory subunit ofArabidopsis thaliana acetohydroxy acid synthase and reconstitution with its catalytic subunit. Biochemistry, 2001, 40: 6836-6844
[21] McCourt J A, Pang S S, King-Scott J, Guddat L W, Duggleby R G. Herbicide-binding sites revealed in the structure of plant acetohydroxy acid synthase.Proc Natl Acad Sci USA, 2006, 103: 569-573
[22] Yu Q, Han H, Vila-Aiub M M, Powles S B. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth.J Exp Bot, 2010, 61: 3925-3934
[23] Yu Q, Powles S B.Resistance to AHAS inhibitor herbicides: current understanding.Pest Manag Sci, 2014, 70: 1340-1350
[24] 杨杰, 王军, 曹卿, 陈志德, 仲维功. 水稻广亲和基因S5-n的功能标记开发及其应用. 作物学报, 2009, 35: 2000-2007
Yang J, Wang J, Cao Q, Chen Z D, Zhong W G.Development and application of a functional marker for wide compatibility geneS5-n of rice. Acta Agron Sin, 2009, 35: 2000-2007 (in Chinese with English abstract)
[25] 王芳权, 杨杰, 范方军, 王军, 朱金燕, 李文奇, 沈文飚, 仲维功. 水稻紫色果皮的延迟遗传及Pb基因功能标记开发. 中国水稻科学, 2014, 28: 605-611
Wang F Q, Yang J, Fang F J, Wang J, Zhu J Y, Li W C, Shen W B, Zhong W G.Delayed inheritance of purple pericarp in rice and development of functional marker forPb gene. Chin J Rice Sci, 2014, 28: 605-611 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!