欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (05): 716-722.doi: 10.3724/SP.J.1006.2018.00716

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻咪草烟抗性的遗传分析及其紧密连锁分子标记的筛选与应用

费云燕1, 杨杰1,2,*(), 范方军1,2, 王芳权1,2, 李文奇1,2, 王军1,2, 朱金燕1,2, 仲维功1,2   

  1. 1江苏省农业科学院粮食作物研究所, 江苏南京 210014
    2扬州大学 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2017-07-06 接受日期:2018-01-08 出版日期:2018-05-20 网络出版日期:2018-01-23
  • 通讯作者: 杨杰
  • 作者简介:

    第一作者联系方式: E-mail: suiyiyixinyisi@163.com

  • 基金资助:
    本项目由国家重点研发计划项目(2017YFD0100403), 江苏省现代农业重点研发项目(BE2015355), 江苏省农业科学院探索性项目(ZX(17)2014)和江苏省自然科学基金项目(BK20171326)资助

Genetic Analysis of Imazethapyr Resistance in Rice and the Closely Linked Marker Selection and Application

Yun-Yan FEI1, Jie YANG1,2,*(), Fang-Jun FAN1,2, Fang-Quan WANG1,2, Wen-Qi LI1,2, Jun WANG1,2, Jin-Yan ZHU1,2, Wei-Gong ZHONG1,2   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2017-07-06 Accepted:2018-01-08 Published:2018-05-20 Published online:2018-01-23
  • Contact: Jie YANG
  • Supported by:
    This study was supported by the National Key Research and Development Program (2017YFD0100403), the Jiangsu Province Key Research and Development Program (Modern Agriculture) (BE2015355), the Exploratory Project of the Jiangsu Academy of Agricultural Sciences (ZX(17)2014), and the Project of Jiangsu Province Natural Science Foundation (BK20171326).

摘要:

抗除草剂水稻的培育及推广能够提高除草效率, 取得巨大经济效益。本研究中金粳818为抗咪草烟资源, 以其与常规粳稻苏垦118杂交产生的F2群体对抗性基因进行遗传分析与分子定位表明, 其抗性表型受1对显性核基因控制, 位于水稻第2染色体SSR分子标记RM7413和RM7426之间。对该区间候选基因预测和测序发现, 咪草烟靶基因-乙酰乳酸合酶基因(ALS)在重要功能位点发生1个碱基的突变(G变为A), 导致一个氨基酸由丝氨酸(S)突变为天冬酰胺(N), 初步确定ALS是抗性表型的重要候选基因。标记RM7413、RM7426与ALS的物理距离分别为165 kb、1612 kb。以金粳818与南粳9108为亲本, 检测标记RM7413在辅助育种实践中的应用潜力, 对杂交种及其自交后代进行连续表型及标记选择, F7群体能够稳定遗传抗咪草烟性状, 表明RM7413在粳稻抗咪草烟辅助育种中具有巨大应用潜力。本研究结果为粳稻抗除草剂分子标记辅助改良奠定了基础。

关键词: 粳稻, 分子标记辅助育种, RM7413, 金粳818, 咪草烟

Abstract:

Cultivation and extension of herbicide-resistant rice can increase the efficiency of weed control and obtain great economic benefits. Here, Jinjing 818 was identified as an imazethapyr-resistant line, F2 population from the cross between Jinjing 818 and the conventional japonica rice Suken 118 was used for genetic analysis and gene mapping of the imazethapyr resistance in rice. The imazethapyr resistance in Jinjing 818 was controlled by a single dominant nuclear gene located between SSR markers RM7413 and RM7426 on the chromosome 2. Through gene-predicting and sequencing in this region, we found that the target gene of imazethapyr, acetolactate synthase gene (ALS), had a nucleotide mutation (G mutated into A) in its coding region, leading to the mutation of serine into asparagine. It could be preliminarily deduced that ALS is the candidate gene for imazethapyr resistance. The physical distances between RM7413, RM7426 and ALS were 165 kb, 1612 kb, respectively. Jinjing 818 and Nanjing 9108 were used as parents to detect the application potential of RM7413 in molecular marker assisted selection breeding (MAS). On the basis of selecting phenotype and RM7413 in the hybrid and its selfing generation, F7 population showed stable imazethapyr resistance, indicating that the great application potential of RM7413 in MAS and breeding for imazethapyr resistant rice. Our results will lay a foundation for breeding herbicide-resistant japonica rice by MAS.

Key words: Oryza sativa subsp. Keng, Molecular marker assisted selection, RM7413, Jinjing 818, Imazethapyr

表1

长江中下游主要推广的91份粳稻品种"

生育特性 Maturing type 品种 Cultivar
中熟中粳
Medium-maturing medium japonica rice
连粳4号, 连粳7号, 连粳9号, 宁粳4号, 徐稻3号, 镇稻88, 镇稻99, 连粳10号, 连粳11, 华粳5号, 华粳6号, 淮稻8号, 淮稻11, 淮优粳2号, 盐稻11, 盐粳11, 武运粳21, 武运粳27, 华瑞稻1号, 淮糯11, 淮粳096, 扬中稻1号, 扬辐粳1号, 扬粳4308, 泗稻12
Lianjing 4, Lianjing 7, Lianjing 9, Ningjing 4, Xudao 3, Zhendao 88, Zhendao 99, Lianjing 10, Lianjing 11, Huajing 5, Huajing 6, Huaidao 8, Huaidao 11, Huaiyoujing 2, Yandao 11, Yanjing 11, Wuyunjing 21, Wuyunjing 27, Huaruidao 1, Huainuo 11, Huaijing 096, Yangzhongjing 1, Yangfujing 1, Yangjing 4308, Sidao 12
迟熟中粳
Late-maturing medium japonica rice
淮稻5号, 盐稻8号, 盐稻9号, 南粳49, 南粳40, 南粳41, 南粳45, 扬育粳2号, 扬辐粳8号, 苏沪香粳, 武陵粳1号, 武育粳3号, 武运粳24, 华粳3号, 华粳4号, 华粳7号, 淮稻7号, 淮稻9号, 淮稻10号, 淮稻13, 盐粳9号, 盐粳10号, 宁粳5号, 武运粳4号, 武运粳11
Huaidao 5, Yandao 8, Yandao 9, Nanjing 49, Nanjing 40, Nanjing 41, Nanjing 45, Yangyujing 2, Yangfujing 8, Suluxiangjing, Wulingjing 1, Wuyunjing 3, Wuyunjing 24, Huajing 3, Huajing 4, Huajing 7, Huaidao 7, Huaidao 9, Huaidao 10, Huaidao 13, Yanjing 9, Yanjing 10, Ningjing 5, Wuyunjing 4, Wuyunjing 11
早熟晚粳
Early-maturing late
japonica
rice
宁粳1号, 南粳5055, 南粳44, 武香粳14, 南粳47, 武运粳7号, 镇稻18, 淮香稻15, 宁粳3号, 南粳42, 通粳981, 武粳13, 武粳15, 武香粳9号, 武运粳19, 武运粳23, 武运粳29, 常农粳4号, 常农粳5号, 常农粳7号, 镇稻7号, 镇稻10号, 镇稻15, 镇稻16, 镇糯19, 宁粳2号, 常粳144, 苏粳5号, 镇稻1号, 镇稻9424
Ningjing 1, Nanjing 5055, Nanjing 44, Wuxiangjing 14, Nanjing 47, Wuyunjing 7, Zhendao 18, Huaixiangdao 15, Ningjing 3, Nanjing 42, Tongjing 981, Wujing 13, Wujing 15, Wuxiangjing 9, Wuyunjing 19, Wuyunjing 23, Wuyunjing 29, Changnongjing 4, Changnongjing 5, Changnongjing 7, Zhendao 7, Zhendao 10, Zhendao 15, Zhendao 16, Zhennuo 19, Ningjing 2, Changjing 144, Sujing 5, Zhendao 1, Zhendao 9424
中熟晚粳
Medium-maturing late japonica rice
南粳46, 扬粳4227, 武育粳18, 常农粳3号, 常农粳6号, 苏粳8号, 苏香粳2号, 镇稻12, 镇稻13, 镇稻17, 苏粳9号
Nanjing 46, Yangjing 4227, Wuyujing 18, Changnongjing 3, Changnongjing 6, Sujing 8, Suxiangjing 2, Zhendao 12, Zhendao 13, Zhendao 17, Sujing 9

图1

抗咪草烟水稻和咪草烟敏感水稻的表型 R: 抗咪草烟水稻金粳818; S: 感咪草烟水稻苏垦118。"

图2

亲本金粳818、苏垦118和F2群体中咪草烟抗性及感性苗表型 R: 抗咪草烟幼苗; S: 感咪草烟幼苗。"

图3

SSR标记RM7326、RM7413、RM7426、RM5221在咪草烟敏感植株中的基因型(部分图) 1: 抗性对照金粳818的基因型; 2: 敏感对照苏垦118的基因型; 其余为咪草烟敏感植株中基因型。"

图4

抗咪草烟基因的标记连锁图"

图5

SSR标记RM7413在F7的随机10个个体中的基因型1: 抗性对照金粳818的基因型; 2: 敏感对照南粳9108的基因型; M: DNA marker; 3~12: 10个随机个体的基因型。"

图6

SSR标记RM7413在常规粳稻中的基因型(部分图) 1: 抗性对照金粳818的基因型; 2: 敏感对照苏垦118的基因型; M: DNA marker; 其余为常规粳稻的基因型。"

[1] Camargo E R, Senseman S A, Mccauley G N, Guice J B.Rice (Oryza sativa L.) response and weed control from tank-mix applications of saflufenacil and imazethapyr. Crop Prot, 2012, 31: 94-98
doi: 10.1016/j.cropro.2011.09.015
[2] Norsworthy J K, Scott R C, Bangarwa S K, Griffith G M, Wilson M J, Mccelland M.Weed management in a furrow-irrigated imidazolinone-resistant hybrid rice production system.Weed Technol, 2011, 25: 25-29
doi: 10.1614/WT-D-10-00088.1
[3] Kumar V, Bellinder R R, Gupta R K, Malik R K, Brainard D C.Role of herbicide-resistant rice in promoting resource conservation technologies in rice-wheat cropping systems of India: a review.Crop Prot, 2008, 27: 290-301
doi: 10.1016/j.cropro.2007.05.016
[4] 苏少泉. 抗除草剂水稻品种的创制与发展. 农药研究与应用, 2010, (5): 6-8
Su S Q.The herbicide-resistant rice varieties expected and development.Agrochem Res Appl, 2010, (5): 6-8 (in Chinese with English abstract)
[5] Tan S, Dahmer M L, Singh B K, Shaner D L.Imidazolinone- tolerant crops: history, current status and future. Pest Manag Sci, 2010, 61: 246-257
doi: 10.1002/ps.993 pmid: 15627242
[6] Kawai K, Kaku K, Izawa N, Shimizu T, Fukuda A, Tanaka Y.A novel mutant acetolactate synthase gene from rice cells, which confers resistance to ALS-inhibiting herbicides.J Pestic Sci, 2007, 32: 89-98
doi: 10.1584/jpestics.G06-40
[7] Masson J A, Webster E P.Use of imazethapyr in water-seeded imidazolinone-tolerant rice (Oryza sativa L.). Weed Technol, 2001, 15: 103-106
doi: 10.1614/0890-037X(2001)015[0103:UOIIWS]2.0.CO;2
[8] 肖国樱, 陈芬, 孟秋成, 周浩, 李锦江, 于江辉, 邓力华, 翁绿水. 我国转基因抗除草剂水稻的生态风险与控制. 农业生物技术学报, 2015, 23: 1-11
doi: 10.3969/j.issn.1674-7968.2015.01.001
Xiao G Y, Chen F, Meng Q C, Zhou H, Li J J, Yu J H, Deng L H, Weng L S.Ecological risk and management of herbicide-resistant transgenic rice (Oryza sativa L.) in China. J Agric Biotechnol, 2015, 23: 1-11 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.01.001
[9] 李余生, 陈涛, 虞秋成, 黄宝才, 王才林. 水稻抗条纹叶枯病基因Stv-bi连锁分子标记的鉴定及利用. 江苏农业学报, 2009, 25: 459-463
Li Y S, Chen T, Yu Q C, Huang B C, Wang C L.Identification and application of SSR markers linked to resistant gene Stv-bi for Rice strip virus. Jiangsu J Agric Sci, 2009, 25: 459-463 (in Chinese with English abstract)
[10] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣. 油菜抗咪唑啉酮类除草剂基因BnALS1R等位基因特异PCR标记的开发与应用. 作物学报, 2013, 39: 1711-1719
Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K.Development and application of allele-specific PCR markers for imidazolinone-resistant gene BnALS1R in Brassica napus. Acta Agron Sin, 2013, 39: 1711-1719 (in Chinese with English abstract)
[11] 李志江, 李延东, 马金丰, 李祥羽, 赵丽娟, 王绍滨. 谷子抗“拿捕净”基因的SSR标记. 黑龙江农业科学, 2013, (7): 5-7
doi: 10.3969/j.issn.1002-2767.2013.07.002
Li Z J, Li Y D, Ma J F, Li X Y, Zhao L J, Wang S B.SSR marker for “Napujing”-resistant gene in Setaria italica. Heilongjiang Agric Sci, 2013, (7): 5-7 (in Chinese)
doi: 10.3969/j.issn.1002-2767.2013.07.002
[12] Bulos M, Sala C A, Altieri E, Ramos M L.Marker assisted selection for herbicide resistance in sunflower.Helia, 2013, 36(59): 1-16
doi: 10.2298/hel1359001b
[13] Mithila J, McLean M D, Chen S, Christopher H J. Development of near-isogenic lines and identification of markers linked to auxinic herbicide resistance in wild mustard (Sinapis arvensis L.). Pest Manag Sci, 2012, 68: 548-556
[14] Michelmore R W, Paran I, Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88: 9828-9832
doi: 10.1073/pnas.88.21.9828
[15] Murray M G, Thompson W F.Rapid isolation of high molecular weight plant DNA.Nucl Acids Res, 1980, 8: 4321-4325
doi: 10.1093/nar/8.19.4321
[16] Luo Z, Yang Z, Zhong B, Li Y, Xie R, Zhao F, Ling Y, He G.Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice(Oryza sativa L.). Genome, 2007, 50: 811-817
doi: 10.1139/g07-064 pmid: 17893721
[17] Givens W A, Shaw D R, Newman M E, Weller S C, Young B G, Wilson R G, Owen M D, Jordan D L.Benchmark study on glyphosate-resistant cropping systems in the United States.Pest Manag Sci, 2011, 67: 758-770
doi: 10.1002/ps.v67.7
[18] 王军, 宫丹妮, 范方军, 朱金燕, 李文奇, 王芳权, 仲维功, 杨杰. 不同类型江苏粳稻主推品种的遗传多样性分析. 中国农学通报, 2016, 32(36): 24-30
Wang J, Gong D N, Fan F J, Zhu J Y, Li W Q, Wang F Q, Zhong W G, Yang J.Genetic diversity analysis of major japonica cultivars of different ecotypes in Jiangsu. Chin Agric Bull, 2016, 32(36): 24-30 (in Chinese with English abstract)
[19] 周振玲, 王宝祥, 樊继伟, 卢百关, 赵志刚, 江玲, 秦德荣, 万建民, 徐大勇. 江淮稻区不同生态型粳稻品种的籼粳分化度和遗传多样性. 中国水稻科学, 2012, 26: 431-437
Zhou Z L, Wang B X, Fan J W, Lu B G, Zhao Z G, Jiang L, Qin D R, Wan J M, Xu D Y.Indica-japonica differentiation degree and genetic diversity of japonica cultivars belongs to different ecotypes from the Yangtza-Huaihe region. Chin J Rice Sci, 2012, 26: 431-437 (in Chinese with English abstract)
[20] Wang C H, Zheng X M, Xu Q, Yuan X P, Huang L, Zhou H F, Wei X H, Ge S.Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity, 2014, 112: 489-496
doi: 10.1038/hdy.2013.130 pmid: 24326293
[21] 程芳艳, 李春光, 刘永巍, 孙翊轩, 王继亮, 孟昭河, 徐正进. 寒地部分粳稻的遗传多样性及遗传结构分析. 沈阳农业大学学报, 2014, 45: 649-654
doi: 10.3969/j.issn.1000-1700.2014.06.002
Cheng F Y, Li C G, Liu Y W, Sun Y X, Wang J L, Meng Z H, Xu Z J.Analysis of genetic diversity and genetic structure about rice materials from cold region.J Shenyang Agric Univ, 2014, 45: 649-654 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1700.2014.06.002
[22] 甘晓燕, 李苗, 关雅静, 陈晓军, 宋玉霞. 宁夏89份粳稻种质遗传多样性的SSR分析. 西北植物学报, 2009, 29: 1772-1778
doi: 10.3321/j.issn:1000-4025.2009.09.008
Gan X Y, Li M, Guan Y J, Chen X J, Song Y X.Genetic diversity of 89 japonica rice varieties in Ningxia province by using SSR. Acta Bot Boreal-Occident Sin, 2009, 29: 1772-1778 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2009.09.008
[23] Becerra V, Paredes M, Ferreira M E, Gutiérrez E, Díaz L M.Assessment of the genetic diversity and population structure in temperate japonica rice germplasm used in breeding in Chile, with SSR markers. Chil J Agric Res, 2017, 77: 15-26
[24] Beckie H J, Hall L M.Genetically-modified herbicide-resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management.Crop Prot, 2014, 66: 40-45
doi: 10.1016/j.cropro.2014.08.014
[1] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[2] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[3] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[4] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[5] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[6] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[7] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[8] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[9] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[10] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[11] 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588.
[12] 马小定,唐江红,张佳妮,崔迪,李慧,黎毛毛,韩龙植. 东乡野生稻与日本晴多态性标记的开发[J]. 作物学报, 2019, 45(2): 316-321.
[13] 单洪波,史佳文,石瑛. 四倍体马铃薯块茎蛋白含量分子标记的开发与验证[J]. 作物学报, 2018, 44(7): 1095-1102.
[14] 李荣田,王新宇,田崇兵,周青,刘长华. cry1C*cry2A*基因早粳稻Bt蛋白的时空表达和抗螟虫性[J]. 作物学报, 2018, 44(12): 1829-1836.
[15] 韩超,许方甫,卞金龙,徐栋,裘实,赵晨,朱盈,刘国栋,张洪程,魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响[J]. 作物学报, 2018, 44(11): 1681-1693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!