作物学报 ›› 2018, Vol. 44 ›› Issue (05): 723-736.doi: 10.3724/SP.J.1006.2018.00723
汪洲涛, 游倩, 高世武, 王春风, 李竹, 马晶晶, 阙友雄, 许莉萍, 罗俊*()
Zhou-Tao WANG, Qian YOU, Shi-Wu GAO, Chun-Feng WANG, Zhu LI, Jing-Jing MA, You-Xiong QUE, Li-Ping XU, Jun LUO*()
摘要:
品种遗传多样性和指纹图谱是育种、品种权保护和新品种推广等工作的重要参考和依据。本研究选用38个来自国家甘蔗品种区域试验的甘蔗新品种(系), 以9对AFLP标记扩增出348个位点, 多态性位点248个, 多态性比率为72.26%; 15对SSR标记扩增出180个位点, 多态性位点176个, 多态性比率为97.78%。38个新品种(系)的遗传相似系数分布在0.668~0.847之间, 其箱线图分布特征显示, 其中的FN、MT、YZ、YG、GT等系列品种(系)遗传基础相似。通过UPGMA聚类表明, 可在遗传相似系数为0.732处将38个甘蔗新品种(系)划分为2个群体, 其中福农09-2201和桂糖06-1492作为一个子群体最先被划分出来, 它们在群体中的异质性较强; 另外, 在遗传相似性系数为0.770处划分出一个子群体a, 其中包含参照品种ROC22、福农07-3206、福农40、海蔗22、桂糖09-12、柳城07-150等品种(系)。ROC22具有广适应性和高产高糖等优良特性, 子群体a中的另外几个品种(系)则更有可能拥有这些特性, 具有更高的推广潜力。本研究选择60个SSR位点构建了38个甘蔗新品种(系)的指纹图谱, 对品种鉴定及品种权的保护具有重要作用, 可望直接应用于指导甘蔗种质资源的遗传多样性评价和分子指纹图谱鉴定, 并将为这些品种(系)推广布局或作为杂交亲本利用提供参考和借鉴。
[1] |
Menhas R, Umer S, Shabbir G.Climate change and its impact on food and nutrition security in Pakistan.Iran J Public Health, 2016, 45: 549-550
pmid: 4888188 |
[2] |
Kumar M.Impact of climate change on crop yield and role of model for achieving food security.Environ Monit Assess, 2016, 188: 1-14
doi: 10.1007/s10661-015-4999-z |
[3] |
Tiepolo M.Urbanization and food security in Niamey, Niger.Stor Urbana, 2002, 26: 29-58
pmid: 17500125 |
[4] |
Matsumoto K.Energy structure and energy security under climate mitigation scenarios in China.PLoS One, 2015, 10: e0144884
doi: 10.1371/journal.pone.0144884 pmid: 4684348 |
[5] |
Luo J, Pan Y B, Xu L P, Grisham M P, Zhang H, Que Y X.Rational regional distribution of sugarcane cultivars in China.Sci Rep, 2015, 5: 15721
doi: 10.1038/srep15721 pmid: 26499905 |
[6] |
Que Y X, Pan Y B, Lu Y H, Yang C, Yang Y T, Huang N, Xu L P.Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism.Biomed Res Int, 2014, (5): 468375
doi: 10.1155/2014/468375 pmid: 24779012 |
[7] | 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-3 |
Yuan L P.Hybrid rice breeding for super high yield.Hybrid Rice, 1997, 12(6): 1-3 (in Chinese with English abstract) | |
[8] | Tang S X, Wei X H, Javier E L.Introduction and utilization of INGER rice germplasm in China.Agric Sci China, 2004, 3: 561-567 |
[9] |
Erskine W, Muehlbauer F J.Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm.Theor Appl Genet, 1991, 83: 119-125
doi: 10.1007/BF00229234 pmid: 24202265 |
[10] |
Nayak S, Naik P K, Acharya L, Mukherjee A K, Panda P C, Das P.Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers.Z Naturforsch C, 2005, 60: 485-492
doi: 10.1038/ncprheum0465 pmid: 16047412 |
[11] | Wang C L, Singh D, Mitra S K.Biochemical markers: A useful tool for assessing genetic diversity in jackfruit (Artocarpus heterophyllus Lam.). Acta Hortic, 2011, 890: 91-101 |
[12] |
Li H, Cao S Y, Niu J, Yuan P, Zhao D.The types and application of molecular markers in the study of pomegranate germplasm resources. Acta Hortic, 2015, 1089: 127-132
doi: 10.17660/ActaHortic.2015.1089.14 |
[13] |
Praveen K, Kumar M H, Umamaheshwari A, Reddy D M, Sudhakar P, Sabita N.SGDB: a sugarcane germplasm database.Sugar Tech, 2015, 17: 150-155
doi: 10.1007/s12355-014-0307-4 |
[14] | Chen R K, Xu L P, Lin Y Q.Modern Sugarcane Genetic Breeding. Beijing: China Agriculture Press, 2011. pp 2-12 |
[15] | 刘庆昌. 遗传学. 北京:科学出版社, 2015. pp 286-288 |
Liu Q C.Genetics. Beijing: Science Press, 2015. pp 286-288 (in Chinese) | |
[16] |
Ashfaq M, Khan A S.Genetic diversity in basmati rice (Oryza sativa L.) germplasm as revealed by microsatellite (SSR) markers. Russ J Genet, 2012, 48: 53-62
doi: 10.1134/S1022795411120027 pmid: 22567855 |
[17] |
Shoaib A, Arabi M I E. Genetic diversity among syrian cultivated and landraces wheat revealed by AFLP markers.Genet Resour Crop Evol, 2006, 53: 901-906
doi: 10.1007/s10722-004-3557-2 |
[18] |
Lenka D, Tripathy S K, Kumar R, Behera M, Ranjan R.Assessment of genetic diversity in quality protein maize (QPM) inbreds using ISSR markers.J Environ Biol, 2015, 36: 985-992
pmid: 26364479 |
[19] |
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting.Nucl Acids Res, 1995, 23: 4407-4414
doi: 10.1093/nar/23.21.4407 pmid: 7501463 |
[20] |
Liu X L, Li X J, Xu C H, Lin X Q, Deng Z H.Genetic diversity of populations of Saccharum spontaneum, with different ploidy levels using SSR molecular markers. Sugar Tech, 2016, 18: 365-372
doi: 10.1007/s12355-015-0399-5 |
[21] |
Lander E S.The new genomics: global views of biology.Science, 1996, 274: 536-539
doi: 10.1126/science.274.5287.536 |
[22] |
Zietkiewicz E, Rafalski A, Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics, 1994, 20: 176-183
doi: 10.1006/geno.1994.1151 pmid: 8020964 |
[23] |
Duarte Filho L S C, Silva P P, Santos J M, Barbosa G V S, Ramalho-Neto C E, Soares L, Andrade J C F, Almeida C. Genetic similarity among genotypes of sugarcane estimated by SSR and coefficient of parentage.Sugar Tech, 2010, 12: 145-149
doi: 10.1007/s12355-010-0028-2 |
[24] |
Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R.Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs.Theor Appl Genet, 1997, 95: 714-722
doi: 10.1007/s001220050617 |
[25] |
Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M.Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs.Theor Appl Genet, 1998, 97: 1248-1255
doi: 10.1007/s001220051017 |
[26] |
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit R J.Current trends in microsatellite genotyping.Mol Ecol Resour, 2011, 11: 591-611
doi: 10.1111/j.1755-0998.2011.03014.x pmid: 21565126 |
[27] |
刘新龙, 蔡青, 毕艳, 陆鑫, 马丽, 应雄美. 中国滇蔗茅种质资源遗传多样性的AFLP分析. 作物学报, 2009, 35: 262-269
doi: 10.3724/SP.J.1006.2009.00262 |
Liu X L, Cai Q, Bi Y, Lu X, Ma L, Ying X M.Genetic diversity analysis for germplasm of Erianthus rockii in China. Acta Agron Sin, 2009, 35: 262-269 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00262 |
|
[28] | Lima M L, Garcia A A, Oliveira K M, Matsuoka S, Arizono H, De Souza C L Jr, De Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar (Saccharum spp.). Theor Appl Genet, 2002, 104: 30-38 |
[29] |
Barret B A, Kidwell K K.Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest.Crop Sci, 1998, 38: 1271-1278
doi: 10.2135/cropsci1998.0011183X003800050026x |
[30] | Singh R K, Singh R B, Singh S P, Mishra N, Rastogi J, Sharma M L, Kumar A.Genetic diversity among Saccharum spontaneum clones and commercial hybrids through SSR markers. Sugar Tech, 2013, 15: 109-115 |
[31] |
齐永文, 劳方业, 张垂明, 樊丽娜, 何慧怡, 刘少谋, 李奇伟, 邓海华. 中美重要甘蔗种质SSR遗传多样性比较. 热带作物学报, 2011, 32: 99-104
doi: 10.3969/j.issn.1000-2561.2011.01.021 |
Qi Y W, Lao F Y, Zhang C M, Fan L N, He H Y, Liu S M, Li Q W, Deng H H.Comparative analysis of genetic diversity of Chinese and American sugarcane (Saccharum spp.) using SSR makers. Chin J Trop Crop, 2011, 32: 99-104 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2011.01.021 |
|
[32] |
刘新龙, 马丽, 陈学宽, 应雄美, 蔡青, 刘家勇, 吴才文. 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010, 36: 202-210
doi: 10.3724/SP.J.1006.2010.00202 |
Liu X L, Ma L, Chen X K, Ying X M, Cai Q, Liu J Y, Wu C W.Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China.Acta Agron Sin, 2010, 36: 202-210 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00202 |
|
[33] |
姚春雪, 王先宏, 何丽莲, 李富生. 甘蔗与蔗茅杂交不同世代的SSR指纹图谱构建. 分子植物育种, 2011, 9: 381-389
doi: 10.3969/mpb.009.000381 |
Yao C X, Wang X H, He L L, Li F S.DNA fingerprint construction of different generations of Saccharum spp. × Erianthus fulvus using SSR marker. Mol Plant Breed, 2011, 9: 381-389 (in Chinese with English abstract)
doi: 10.3969/mpb.009.000381 |
|
[34] |
汪洲涛, 苏炜华, 阙友雄, 许莉萍, 张华, 罗俊. 应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性. 中国生态农业学报, 2016, 24: 790-800
doi: 10.13930/j.cnki.cjea.151284 |
Wang Z T, Su W H, Que Y X, Xu L P, Zhang H, Luo J.Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models.Chin J Eco-Agric, 2016, 24: 790-800 (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.151284 |
|
[35] |
罗俊, 邓祖湖, 阙友雄, 袁照年, 陈如凯. 国家甘蔗第七轮区域试验品种的丰产性及稳定性. 应用与环境生物学报, 2012, 18: 734-739
doi: 10.3724/sp.j.1145.2012.00734 |
Luo J, Deng Z H, Que Y X, Yuan Z N, Chen R K.Productivity and stability of sugarcane varieties in the 7th round national regional trial of China.Chin J Appl Environ Biol, 2012, 18: 734-739 (in Chinese with English abstract)
doi: 10.3724/sp.j.1145.2012.00734 |
|
[36] |
Luo J, Pan Y B, Que Y X, Zhang H, Grisham M P, Xu L P.Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China.Sci Rep, 2015, 5: 15505
doi: 10.1038/srep15505 pmid: 26489689 |
[37] | Pan Y B. Application of microsatellite and RAPD fingerprints in the Florida sugarcane variety program. Int Sugar J, 2003, March/April: 19-28 |
[38] | Pan Y B, Scheffler B E, Richard Jr E P. High-throughput molecular genotyping of commercial sugarcane clones with microsatellite (SSR) markers.Sugar Tech, 2007, 9: 176-181 |
[39] |
Pan Y B.Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci, 2010, 1: 87-94
doi: 10.4236/ajps.2010.12011 |
[40] | 闫学兵, 阙友雄, 许莉萍, 郭晋隆, 陈如凯, 潘永保. 甘蔗EST序列的SSR信息分析. 热带作物学报, 2010, 31: 1497-1501 |
Yan X B, Que Y X, Xu L P, Guo J L, Chen R K, Pan Y B.Analysis of SSR information in EST resources of sugarcane.Chin J Trop Crop, 2010, 31: 1497-1501 (in Chinese with English abstract) | |
[41] |
Cordeiro G M, Pan Y B, Henry R J.Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm.Plant Sci, 2003, 165: 181-189
doi: 10.1016/S0168-9452(03)00157-2 |
[42] |
Aitken K S, Jackson P A, McIntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar.Theor Appl Genet, 2005, 110: 789-801
doi: 10.1007/s00122-004-1813-7 pmid: 15700149 |
[43] |
Milbourne D, Meyer R, Bradshaw J E, Baird E, Bonar N, Provan J, Powell W, Waugh R.Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato.Mol Breed, 1997, 3: 127-136
doi: 10.1023/A:1009633005390 |
[44] |
Streit M, Gehlenborg N.Bar charts and box plots.Nat Methods, 2014, 11: 117
doi: 10.1038/nmeth.2807 pmid: 24645191 |
[45] |
Nuzzo R L.The Box plots alternative for visualizing quantitative data.PM&R, 2016, 8: 268-272
doi: 10.1016/j.pmrj.2016.02.001 pmid: 26892802 |
[46] |
Creste S, Sansoli D M, Tardiani A C S, Silva D N, Goncalves F K, Favero T M, Medeiros C N F, Festucci C S, Carlini-Garcia L A, Landell M G A, Pinto L R. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane.Sugar Tech, 2010, 12: 150-154
doi: 10.1007/s12355-010-0029-1 |
[47] |
Mohamed H A, Manosh K B, Zhang Z W, Guo W W.Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection.Sci Hortic, 2011, 128: 220-227
doi: 10.1016/j.scienta.2011.01.021 |
[48] |
高伟, 王坤波, 刘方, 王春英, 张香娣, 王玉红, 黎绍惠. SSR引物及多态性位点数对陆地棉野生种系聚类结果的影响. 植物遗传资源学报, 2013, 14: 237-242
doi: 10.3969/j.issn.1672-1810.2013.02.008 |
Gao W, Wang K B, Liu F, Wang C Y, Zhang X D, Wang Y H, Li S H.Effection of the quantity of SSR primer and allele on cluster analysis of Gossypium hirsutum Linn races. J Plant Genet Resour, 2013, 14: 237-242 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2013.02.008 |
|
[49] |
Luo J, Pan Y B, Xu L P, Zhang H, Yuan Z N, Deng Z H, Chen R K, Que Y X.Cultivar evaluation and essential test locations identification for sugarcane breeding in China. Sci World J, 2014: 302753
doi: 10.1155/2014/302753 pmid: 4055468 |
[50] |
Benin G, Matei G, Costa d O A, Silva G O, Hagemann T R, Lemes da Silva C, Pagliosa E S, Beche E. Relationships between four measures of genetic distance and breeding behavior in spring wheat.Genet Mol Res, 2012, 11: 2390-2400
doi: 10.4238/2012.June.15.3 pmid: 22782625 |
[51] |
Yao J, Li H, Ye J, Shi L L.Relationship between parental genetic distance and offspring’s heterosis for early growth traits in Liriodendron: implication for parent pair selection in cross breeding.New For, 2016, 47: 163-177
doi: 10.1007/s11056-015-9508-2 |
[52] |
Longin F H, Liu W X, Ranc N, Reif J C.Association of progeny variance and genetic distances among parents and implications for the design of elite maize breeding programs.Maydica, 2011, 56: 227-231
doi: 10.1007/s10343-010-0235-5 |
[53] |
Wegary D, Vivek B, Labuschagne M.Association of parental genetic distance with heterosis and specific combining ability in quality protein maize.Euphytica, 2013, 191: 205-216
doi: 10.1007/s10681-012-0757-2 |
[54] | 戎俊, 杨小强, 耿宇鹏, 宋志平, 卢宝荣. 分子生态学(第2版). 北京: 高等教育出版社, 2015. pp 249-250 |
Rong J, Yang X Q, Geng Y P, Song Z P, Lu B R. Molecular Ecology (2nd edn). Beijing: Higher Education Press, 2015. pp 249-250 (in Chinese) | |
[55] | 朱有勇. 农业生物多样性与作物病虫害控制. 北京: 科学出版社, 2013. pp 9-27 |
Zhu Y Y.Agricultural Biodiversity and Control of Crop Diseases and Insect Pests. Beijing: Science Press, 2013. pp 9-27 (in Chinese) |
[1] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[2] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[3] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[6] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[7] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[8] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[9] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[10] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[11] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[12] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[13] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[14] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[15] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
|