欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1105-1113.doi: 10.3724/SP.J.1006.2018.01105

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点

鲜小华1,**(),王嘉1,2,**(),徐新福1,曲存民1,卢坤1,李加纳1,刘列钊1,*()   

  1. 1 西南大学农学与生物科技学院 / 西南大学农业科学研究院, 重庆 400715
    2 南充市农业科学院, 四川南充 637000
  • 收稿日期:2018-01-29 接受日期:2018-06-09 出版日期:2018-08-10 网络出版日期:2018-06-11
  • 通讯作者: 鲜小华,王嘉,刘列钊
  • 基金资助:
    本研究由国家自然科学基金项目(31771830);重庆市科委项目(cstc2016shmszx80083);中央高校基本科研业务费专项(XDJK2017A009)

Mining Yellow-seeded Micro Effect Loci in B. napus by Integrated GWAS and WGCNA Analysis

Xiao-Hua XIAN1,**(),Jia WANG1,2,**(),Xin-Fu XU1,Cun-Min QU1,Kun LU1,Jia-Na LI1,Lie-Zhao LIU1,*()   

  1. 1 College of Agronomy and Biotechnology / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    2 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2018-01-29 Accepted:2018-06-09 Published:2018-08-10 Published online:2018-06-11
  • Contact: Xiao-Hua XIAN,Jia WANG,Lie-Zhao LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771830);the Science and Technology Committee of Chongqing(cstc2016shmszx80083);the Fundamental Research Funds for the Central Universities(XDJK2017A009)

摘要:

甘蓝型油菜是世界上最重要的油料作物之一, 黄籽是提高品质的重要育种目标。本研究以520份具有代表性的甘蓝型油菜品种(系)为材料, 结合种子发育过程中8个时期的转录组数据, 采取整合全基因组关联分析(GWAS)和权重基因共表达网络分析(WGCNA)的策略, 挖掘油菜黄籽性状微效作用位点, 2年共检测到199个SNP位点, 在SNP位点附近共挖掘出1826个名义候选基因。利用R语言中的WGCNA软件包构建了8个共表达模块, 基因功能富集分析显示, turquoise模块和blue模块与黄籽表型相关。苯丙烷代谢途径、类黄酮途径的关键基因BnATCAD4BnF3H以及BnANS为turquoise模块的枢纽基因(hub gene)。通过已知的黄籽相关基因, 挖掘出了一部分黄籽微效作用基因, 这些基因多参与苯丙烷、类黄酮以及原花青素代谢途径。本研究挖掘的这些位点和候选基因可作为影响油菜黄籽形成的重要候选区域和基因, 有助于探究甘蓝型油菜黄籽基因资源信息、揭示油菜黄籽性状的遗传基础和分子机制、丰富分子育种理论以及提高油菜品质。

关键词: 甘蓝型油菜, 黄籽, 全基因组关联分析, 权重基因共表达网络分析

Abstract:

Brassica napus is one of the most important oil crops in the world, and developing yellow-seeded B. napus with improved qualities is a major breeding goal. The yellow-seeded minor genes were mined by genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) with 520 representative varieties (or lines) and the transcriptional data at eight time points during the seed development. The 199 SNPs and 1826 nominally significant GWAS candidate genes were detected. Weighted gene co-expression network analysis was performed using the WGCNA R package to construct the resulting network composing eight distinct gene modules. Among them, the turquoise module and the blue module were related to the seed coat color based on gene function enrichment analysis. BnATCAD4, BnF3H, and BnANS, the key enzymes genes of phenylpropane metabolic pathway and flavonoid metabolic pathway were found in turquoise module. Through the characterization of module content and topology, we mined a number of micro effect genes based on known yellow-seed related genes mainly involved in the phenylpropanoid metabolic process, flavonoid metabolic process and proanthocyanidin biosynthetic process. This information of minor loci and candidate genes should be useful in the breeding for yellow-seeded B. napus.

Key words: Brassica napus, yellow-seeded, GWAS, WGCNA

图1

甘蓝型油菜黄籽表型全基因组关联分析结果的曼哈顿图 灰色的虚线为Bonferroni校正阈值线, 红色为FDR校正阈值线。"

图2

基因共表达网络构建结果 A: 基因的聚类与模块构建; B: 特征与模块相关性分析。"

表1

各模块GO富集情况(部分)"

模块
Module
基因数目
Number of genes
GO 每个模块显著富集的term
Top term for each module
P
P-value
FDR
Black 68 GO:0004499 N,N-二甲基苯胺单加氧酶活性
N,N-dimethylaniline monooxygenase activity
2.38E-03 1.26E-01
Blue 303 GO:0045551 肉桂醇脱氢酶活性
Cinnamyl-alcohol dehydrogenase activity
1.53E-04 3.37E-02
GO:0052747 芥子醇脱氢酶活性
Sinapyl alcohol dehydrogenase activity
1.53E-04 3.37E-02
GO:0009698 苯丙烷代谢过程
Phenylpropanoid metabolic process
1.40E-06 2.01E-03
GO:0009699 苯丙烷生物合成过程
Phenylpropanoid biosynthetic process
4.27E-06 3.06E-03
GO:0019748 次生代谢过程
Secondary metabolic process
9.92E-05 3.56E-02
Brown 157 GO:0044699 单一的生物过程
Single-organism process
4.78E-05 5.30E-02
Green 82 GO:0008107 α-1,2岩藻糖基转移酶活性
Galactoside 2-alpha-L-fucosyltransferase activity
4.89E-04 4.74E-02
Pink 49 GO:0016886 形成磷酸酯键的连接酶活性
Ligase activity, forming phosphoric ester bonds
4.32E-05 7.04E-03
Red 79 GO:0043170 大分子代谢过程
Macromolecule metabolic process
3.86E-05 2.51E-02
Turquoise 473 GO:0009699 苯丙烷生物合成过程
Phenylpropanoid biosynthetic process
6.06E-07 1.47E-04
GO:0010023 原花青素的生物合成过程
Proanthocyanidin biosynthetic process
1.11E-04 7.92E-03
GO:0009809 木质素的生物合成过程
Lignin biosynthetic process
1.23E-04 8.13E-03
GO:0009698 苯丙烷代谢过程
Phenylpropanoid metabolic process
2.90E-04 1.36E-02
GO:0009808 木质素代谢过程
Lignin metabolic process
3.68E-04 1.65E-02
GO:0009812 类黄酮代谢过程
Flavonoid metabolic process
5.93E-04 2.18E-02
GO:0009813 类黄酮生物合成过程
Flavonoid biosynthetic process
6.35E-04 2.27E-02
Yellow 142 GO:0050619 还原酶活性
Phytochromobilin: ferredoxin oxidoreductase activity
5.33E-03 2.78E-01

图3

turquoise模块的KEGG富集分析"

图4

turquoise模块内的基因共表达网络"

图5

枢纽基因相关的局部调控网络 红圈强调的基因参与类黄酮-原花青素途径。A: turquoise模块; B: blue模块。"

[1] Wittkop B, Snowdon R J, Friedt W . Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 2009,170:131
doi: 10.1007/s10681-009-9940-5
[2] 张永泰, 李爱民, 蒋金金, 王娟, 王幼平 . 新型黄籽甘蓝型油菜的获得及其遗传规律分析. 中国油料作物学报, 2011,33:302-306
Zhang Y T, Li A M, Jiang J J, Wang J, Wang Y P . Discovery and genetics of new type of yellow seed Brassica napus. Chin J Oil Crop Sci, 2011,33:302-306 (in Chinese with English abstract)
[3] Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S . Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001,98:11479-11484
doi: 10.1073/pnas.201394398
[4] Hasan M, Friedt W, Pons-Kuehnemann J, Freitag N M, Link K, Snowdon R J . Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape(Brassica napus ssp. napus).Theor Appl Genet, 2008, 116:1035-1049
[5] Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z . Genome wide association mapping of seed coat color in Brassica napus. J Agric Food Chem, 2017,65:5229-5237
[6] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生 . 植物数量性状关联分析研究进展, 作物学报, 2007,33:523-530
doi: 10.3321/j.issn:0496-3490.2007.04.001
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S . Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007,33:523-530 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.04.001
[7] Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005,4:17
doi: 10.2202/1544-6115.1128 pmid: 16646834
[8] 刘伟, 李立, 叶桦, 屠伟 . 权重基因共表达网络分析在生物医学中的应用. 生物工程学报, 2017,33:1791-1801
doi: 10.13345/j.cjb.170006
Liu W, Li L, Ye H, Tu W . Weighted gene co-expression network analysis in biomedicine research. Chin J Biotech, 2017,33:1791-1801 (in Chinese with English abstract)
doi: 10.13345/j.cjb.170006
[9] Weiss J N, Karma A, MacLellan W R, Deng M, Rau C D, Rees C N, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z L, Wang Y B, Lusis A J . “Good enough solutions” and the genetics of complex diseases. Circ Res, 2012,111:493-504
doi: 10.1161/CIRCRESAHA.112.269084
[10] Farber C R . Systems-level analysis of genome-wide association data. G3: Genes Genom Genet, 2013,3:119-129
doi: 10.1534/g3.112.004788 pmid: 23316444
[11] Huang D, Koh C, Feurtado J A, Tsang E W, Cutler A J . MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics, 2013,14:140
[12] Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[13] 甘蓓, 杨红玉 . 拟南芥中类黄酮代谢途径及其调控. 安徽农业科学, 2008,36:5290-5292
Gan B, Yang H Y . Metabolic approach of flavonoids and its regulation in Arabidopsis thaliana. J Anhui Agric Sci, 2008,36:5290-5292 (in Chinese with English abstract)
[14] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I . TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005,17:2966-2980
[15] 黄杨岳, 孔祥祯, 甄宗雷, 刘嘉 . 全基因组关联研究中的多重校正方法比较. 心理科学进展, 2013,21:1874-1882
doi: 10.3724/SP.J.1042.2013.01874
Huang Y Y, Kong X Z, Zhen Z L, Liu J . The comparison of multiple testing corrections methods in genome-wide association studies. Adv Psycholog Sci, 2013,21:1874-1882
doi: 10.3724/SP.J.1042.2013.01874
[16] Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito S, Sakuma H, Miyashita S, Arata S, Kojima T, Suzuki K . SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet, 2016,17:60
[17] Zhang W, Li J, Guo Y, Zhang L, Xu L, Gao X, Zhu B, Gao H, Ni H, Chen Y . Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Sci Rep, 2016,6:38073
doi: 10.1038/srep38073
[18] Marshall C R, Howrigan D P, Merico D, Thiruvahindrapuram B, Wu W, Greer D S, Antaki D, Shetty A, Holmans P A, Pinto D, Gujral M, Brandler W M, Malhotra D, Wang Z, Fajarado K V F, Maile M S, Ripke S, Agartz I, Albus M, Alexander M, Amin F, Atkins J, Bacanu S A, Belliveau R A, Bergen S E, Bertalan M, Bevilacqua E, Bigdeli T B, Black D W, Bruggeman R, Buccola N G, Buckner R L, Bulik-Sullivan B, Byerley W, Cahn W, Cai G, Cairns M J, Campion D, Cantor R M, Carr V J, Carrera N, Catts S V, Chambert K D, Cheng W, Cloninger C R, Cohen D, Cormican P, Craddock N, Crespo-Facorro B, Crowley J J, Curtis D, Davidson M, Davis K L, Degenhardt F, Del Favero J, DeLisi L E, Dikeos D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Eichhammer P, Eriksson J, Escott-Price V, Essioux L, Fanous A H, Farh K H, Farrell M S, Frank J, Franke L, Freedman R, Freimer N B, Friedman J I, Forstner A J, Fromer M, Genovese G, Georgieva L, Gershon E S, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein J I, Gratten J, de Haan L, Hamshere M L, Hansen M, Hansen T, Haroutunian V, Hartmann A M, Henskens F A, Herms S, Hirschhorn J N, Hoffmann P, Hofman A, Huang H, Ikeda M, Joa I, Kähler A K, Kahn R S, Kalaydjieva L, Karjalainen J, Kavanagh D, Keller M C, Kelly B J, Kennedy J L, Kim Y, Knowles J A, Konte B, Laurent C, Lee P, Lee S H, Legge S E, Lerer B, Levy D L, Liang K Y, Lieberman J, Lönnqvist J, Loughland C M, Magnusson P K E, Maher B S, Maier W, Mallet J, Mattheisen M, Mattingsdal M, McCarley R W, McDonald C, McIntosh A M, Meier S, Meijer C J, Melle I, Mesholam-Gately R I, Metspalu A, Michie P T, Milani L, Milanova V, Mokrab Y, Morris D W, Müller-Myhsok B, Murphy K C, Murray R M, Myin-Germeys I, Nenadic I, Nertney D A, Nestadt G, Nicodemus KK, Nisenbaum L, Nordin A, O’Callaghan E, O’Dushlaine C, Oh S Y, Olincy A, Olsen L, O'Neill F A, Van Os J, Pantelis C, Papadimitriou G N, Parkhomenko E, Pato M T, Paunio T, Perkins D O, Pers T H, Pietiläinen O, Pimm J, Pocklington A J, Powell J, Price A, Pulver A E, Purcell S M, Quested D, Rasmussen H B, Reichenberg A, Reimers M A, Richards A L, Roffman J L, Roussos P, Ruderfer D M, Salomaa V, Sanders A R, Savitz A, Schall U, Schulze T G, Schwab S G, Scolnick E M, Scott R J, Seidman L J, Shi J, Silverman J M, Smoller J W, Söderman E, Spencer C C A, Stahl E A, Strengman E, Strohmaier J, Stroup T S, Suvisaari J, Svrakic D M, Szatkiewicz J P, Thirumalai S, Tooney P A, Veijola J, Visscher P M, Waddington J, Walsh D, Webb B T, Weiser M, Wildenauer D B, Williams N M, Williams S, Witt S H, Wolen A R, Wormley B K, Wray N R, Wu J Q, Zai C C, Adolfsson R, Andreassen O A, Blackwood D H R, Bramon E, Buxbaum J D, Cichon S, Collier D A, Corvin A, Daly M J, Darvasi A, Domenici E, Esko T, Gejman P V, Gill M, Gurling H, Hultman C M, Iwata N, Jablensky A V, Jönsson E G, Kendler K S, Kirov G, Knight J, Levinson D F, Li Q S, McCarroll S A, McQuillin A, Moran J L, Mowry B J, Nöthen M M, Ophoff R A, Owen M J, Palotie A, Pato C N, Petryshen T L, Posthuma D, Rietschel M, Riley B P, Rujescu D, Sklar P, St Clair D, Walters J T R, Werge T, Sullivan P F, O’Donovan M C, Scherer S W, Neale B M, Sebat J . Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet, 2017,49:27-35
doi: 10.1038/ng.3725
[19] He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017,130:2327-2343
doi: 10.1007/s00122-017-2962-9
[20] 叶小利, 李加纳, 唐章林, 梁颖, 谌利 . 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001,27:550-556
doi: 10.3321/j.issn:0496-3490.2001.05.002
Ye X L, Li J N, Tang Z L, Liang Y, Chen L . Study on seed coat color and related characters of Brassica napus. Acta Agron Sin, 2001,27:550-556 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2001.05.002
[21] Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N . Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007,50:840-854
[22] Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L . TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009,281:109-123
[23] Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G . Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009,69:553-563
[24] Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J . Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013,132:382-389
[25] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K . Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB). Theor Appl Genet, 2014,127:339-347
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[11] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[12] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[13] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[14] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!