作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1380-1392.doi: 10.3724/SP.J.1006.2018.01380
王作敏1(),刘瑾1,孙士超2,张新宇2,薛飞2,李艳军2,*(),孙杰2
Zuo-Min WANG1(),Jin LIU1,Shi-Chao SUN2,Xin-Yu ZHANG2,Fei XUE2,Yan-Jun LI2,*(),Jie SUN2
摘要:
植物多药和有毒化合物输出家族(multidrug and toxic compound extrusion, MATE)是一类可转运阳离子染料、氨基葡糖、多种抗生素与药物等次生代谢产物的转运蛋白家族。本研究利用生物信息学手段从陆地棉基因组数据库中鉴定了MATE家族基因, 并从基因的系统进化关系、染色体分布、基因结构和表达模式等方面对该基因家族特征进行了比较分析。共鉴定出91个陆地棉MATE基因, 命名为GhMATE1~GhMATE91。陆地棉MATE蛋白与拟南芥MATE蛋白均可分为A、B、C、D、E、F和G 7个亚家族, 其中84个GhMATE蛋白具有12个典型的跨膜结构域。染色体定位显示, GhMATE家族成员定位在不同的25条染色体上, 共形成5个基因簇。qRT-PCR分析发现, GhMATE家族基因在棉花各组织中均有表达, 但表达模式各不相同, 其中GhMATE13和GhMATE23在棕色棉纤维中的表达量明显高于在白色棉中, 表明它们可能与棕色棉纤维的颜色形成相关。本研究为进一步解析棉花MATE家族基因的功能和作用机制积累了有价值的资料。
[1] | 赵向前, 王学德 . 天然彩色棉纤维色素成分的研究. 作物学报, 2005,31:456-462 |
Zhao X Q, Wang X D . Study on pigment constituents of natural colored cotton fiber. Acta Agron Sin, 2005,31:456-462 (in Chinese with English abstract) | |
[2] | 邱新棉, 周文龙, 李茂松, 马永根 . 天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究. 中国农业科学, 2002,35:610-615 |
Qiu X M, Zhou W L, Li M S, Ma Y G . Study on the changes of pigment and wet processing to form the genetic basis of natural color cotton fiber pigment. Sci Agric Sin, 2002,35:610-615 (in Chinese with English abstract) | |
[3] | 董合忠, 李维江, 唐薇, 张冬梅 . 彩色棉纤维发育与色素形成. 中国棉花, 2004,31(2):2-4 |
Dong H Z, Li W J, Tang W, Zhang D M . Pigment synthesis and cotton fiber development of color cotton. China Cotton, 2004,31(2):2-4 (in Chinese with English abstract) | |
[4] | 赵兴华, 渠云芳, 黄晋玲 . 彩色棉育种研究现状与展望. 现代农业科技, 2011, ( 5):84-85 |
Zhao X H, Qu Y F, Huang J L . Research status and prospect of colored cotton breeding. Mod Agric Sci Technol, 2011, ( 5):84-85 (in Chinese with English abstract) | |
[5] | Li Y J, Zhang X Y, Wang F W, Yang C L, Liu F, Xia G X, Sun J . A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber. J Proteomics, 2013,78:374-388 |
[6] | Feng H J, Li Y J, Wang S F, Liu Y C, Xue F, Zhang L L, Sun J . Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). J Exp Bot, 2014,65:5759-5769 |
[7] | Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K . Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta, 2009,230:899-915 |
[8] | Pourcel L, Irani N G, Lu Y, Riedl K , Schwartz S and Grotewold E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant, 2010,3:78-90 |
[9] | Xu W, Grain D, Bobet S, Gourrierec J, Thevenin J, Kelemen Z, Lepiniec L, Dubos C . Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol, 2014,202:132-144 |
[10] | Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M, Saito K, Narumi I . Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J, 2010,62:549-559 |
[11] | Pang Y Z , Abeysinghe I S B, He J, He X Z, Huhman D, Mewan K M, Sumner L W, Yun J F, Dixon R A . Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol, 2013,161:1103-1116 |
[12] | Zhao J, Dixon R A . MATE transporters facilitate vacuolar uptake of epicatechin 3’-0-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell, 2009,21:2323-2340 |
[13] | Kleindt C K, Stracke R, Mehrtens F, Weisshaar B . Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway. BMC Res Notes, 2010,3:255 |
[14] |
He X, Szewczyk P, Karyakin A, Evin M, Hong W X, Zhang Q . Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature, 2010,467:991-994
doi: 10.1038/nature09408 pmid: 20861838 |
[15] | Tiwari M, Sharma D, Singh M, Tripathi R D, Trivedi P K . Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep, 2014,4:3964 |
[16] | Roschzttardtz H, Seguela-Arnaud M, Briat J F, Vert G, Curie C . The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell, 2011,23:2725-2737 |
[17] |
Thompson E P, Wilkins C, Demidchik V, Davies J M, Glover B J . An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot, 2010,61:439-451
doi: 10.1093/jxb/erp312 pmid: 2803208 |
[18] | Debeaujon I, Peeters A J M, Leon-Kloosterziel K M, Koornneef M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell, 2001,13:853-871 |
[19] | Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I . TRANSPARENT TESTA10 encodes alaccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat Plant Cell, 2005,17:2966-2980 |
[20] | Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y H, Dixon R A . MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell, 2011,23:1536-1555 |
[21] | Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R . Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testal2 mutant. Plant Biol, 2011,13:42-50 |
[22] | 冯鸿杰 . 天然彩色棉纤维色素物质的鉴定及其代谢机制研究. 石河子大学博士学位论文, 新疆石河子, 2014 |
Feng H J . Identification and Metabolic Mechanism of Pigment Fiber in Natural Colored Cotton. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2014 ( in Chinese with English abstract) | |
[23] | 蒋建雄, 张天真 . 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003,15:166-167 |
Jiang J X, Zhang T Z . Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method Cott Sci, 2003,15:166-167 (in Chinese with English abstract) | |
[24] | Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson T R, Li Y, Meade F, Teodor R, Vaistij F E, Walker C, Bowser T A, Graham I A . A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 2012,336:1704-1708 |
[25] |
Brown M H, Paulsen I T, Skurray R A . The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol, 1999,31:394-395
doi: 10.1021/jo035400u |
[26] | Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A . Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS One, 2014,9(9):e108789 |
[27] | Diener A C, Gaxiola R A, Fink G R . Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell, 2011,13:1625-1638 |
[28] | Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, Nakai M, Shiina T . Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signal Behav 2013,8(4):e23603 |
[29] | Durrett T P, Gassmann W, Rogers E E . The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol, 2007,144:197-205 |
[30] | Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L . ADTX/MATE type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant, 2014,7:1522-1532 |
[31] |
Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y . Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun, 2007,358:73-78
doi: 10.1016/j.bbrc.2007.04.084 pmid: 17482578 |
[32] | Seo P J, Park J, Park M J, Kim Y S, Kim S G, Jung J H . A golgi- localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochem J, 2012,442:551-561 |
[33] | Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M . The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H +-antiporter active in proanthocyanidin-accumulating cells of the seed coat . Plant Cell, 2007,19:2023-2038 |
[34] |
Yazaki K, Sugiyama A, Morita M, Shitan N . Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev, 2008,7:513-524
doi: 10.1142/S021812740601454X |
[35] | Li L, He Z, Pandey G K, Tsuchiya T, Luan S . Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem, 2002,277:5360-5368 |
[36] |
Hvorup R N, Winnen B, Chang A B, Jiang Y, Zhou X F, Saier M H . The multidrug, oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem, 2007,270:799-813
doi: 10.1046/j.1432-1033.2003.03418.x pmid: 12603313 |
[37] | Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verries C, Souquet J M, Mazauric J P, Klein M, Cheynier V . Grapevine MATE-type proteins act as vacuolar H +-dependent acylated anthocyanin transporters . Plant Physiol, 2009,150:402-415 |
[1] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[2] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[3] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[4] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[5] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[6] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[7] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[8] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[9] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[10] | 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207. |
[11] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[12] | 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689. |
[13] | 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178. |
[14] | 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51. |
[15] | 姚珺玥,华营鹏,周婷,王涛,宋海星,官春云,张振华. 甘蓝型油菜AVP1、VHA-a2和VHA-a3基因的鉴定及功能性研究[J]. 作物学报, 2019, 45(8): 1146-1157. |
|