欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 188-195.doi: 10.3724/SP.J.1006.2019.84055

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用异源六倍体(A rA rA nA nC nC n)与甘蓝种间杂交合成甘蓝型油菜的新方法

岳芳1,汪雷1,陈燕桂1,忻晓霞3,李勤菲1,2,梅家琴1,熊志勇3,*(),钱伟1,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2西南大学园艺园林学院, 重庆 400715
    3内蒙古大学生命科学学院, 内蒙古呼和浩特 010021
  • 收稿日期:2018-04-16 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-09
  • 通讯作者: 熊志勇,钱伟
  • 基金资助:
    本研究由国家重点基础研究发展计划(973计划)项目(2015CB150201);国家自然科学基金项目(31471173);和重庆市社会事业与民生保障科技创新专项资助(cstc2016shmszx80074)

A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa

Fang YUE1,Lei WANG1,Yan-Gui CHEN1,Xiao-Xia XIN3,Qin-Fei LI1,2,Jia-Qin MEI1,Zhi-Yong XIONG3,*(),Wei QIAN1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
    2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
    3 College of Life Sciences, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
  • Received:2018-04-16 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-09
  • Contact: Zhi-Yong XIONG,Wei QIAN
  • Supported by:
    This study was supported by the National Basic Research Program of China (973 Program)(2015CB150201);the National Natural Science Foundation of China(31471173);and the Project of Chongqing Science and Technology Commission Grants(cstc2016shmszx80074)

摘要:

利用亲本种的遗传变异是改良油菜的重要途径, 本研究提出一种利用甘蓝拓宽甘蓝型油菜遗传多样性的新方法。以甘蓝型油菜(A nA nC nC n)品种中双11号为母本, 与白菜型油菜(A rA r)品系SWU07杂交, 经染色体加倍获得异源六倍体(A rA rA nA nC nC n), 再与甘蓝(C oC o)杂交, 创建出具有亲本种遗传成分的新型甘蓝型油菜(A rA nC nC o)。该六倍体连续3个世代核型稳定, 各世代中的自交和自由授粉结实率无显著差异, 花粉育性在94.6%~98.8%之间, 3个世代自交平均结实率为每角果5.47粒, 自由授粉平均结实率为每角果7.93粒; 各世代六倍体(A rA rA nA nC nC n)与不同类型甘蓝杂交平均结实率分别为每角果0.05、0.04、0.05粒, 世代间无显著差异, 且六倍体与栽培、野生甘蓝杂交结实性无显著差异, 可交配性不受六倍体世代及甘蓝类型的影响。尽管该六倍体与甘蓝可交配性较低, 但仍可在田间条件下成功杂交, 获得新型甘蓝型油菜(A rA nC nC o), 表明以A rA rA nA nC nC n六倍体为桥梁与甘蓝杂交, 是一种有效导入甘蓝遗传成分、创建新型甘蓝型油菜的新方法。

关键词: 甘蓝型油菜, 白菜型油菜, 甘蓝, 异源六倍体, 可交配性

Abstract:

It is an important way to improve Brassica napus (A nA nC nC n) try using its parental species. Here a hexaploid method was proposed to synthesize B. napus by crossing B. oleracea (C oC o) with the hexaploid derived from the interspecific hybridization between B. napus and B. rapa. The hexaploid (A rA rA nA nC nC n) was developed by crossing B. napus cv. ‘Zhongshuang 11’ with B. rapa cv. ‘SWU07’, and followed by chromosome doubling. And the hexaploid was crossed with various types of B. oleracea to develop new type B. napus. The hexaploid exhibited stable karyotype in three successive generations. There was no significant difference for seed setting rate between open-pollination and selfing-pollination in generations. The pollen fertility ranged from 94.6% to 98.8%. The average seed-setting rate was 5.47 and 7.93 seeds per pod for the open-pollination and selfing-pollination in three successive generations, respectively. The average crossability was 0.05, 0.04, and 0.05 seeds per pod in three successive crossing generations between the hexaploid and B. oleracea, respectively. There was no significant difference in pod setting rate and seed setting rate among the hybrids between the hexaploid and the diverse types of B. oleracea. A few seeds were obtained by crossing B. oleracea with hexaploid A rA rA nA nC nC n in the field, suggesting that the method of hexaploid is useful to introgress the genomic components of parental species into B. napus.

Key words: Brassica napus, Brassica rapa, Brassica oleracea, allohexaploid, crossability

图1

新型甘蓝型油菜的育成 径"

表1

鉴定六倍体的SSR引物"

基因组
Genome
引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
A04 QW150 CGTTTTCGTAACACTCAAGC GTTGGTTCGTGGTTCCTTCT
A04 QW156 ATCCCAAAGAAACACGACA ATCCACCTCCCATCACATT
A07 SWUA1236 CTGATGTCCCCAGTACCAT CAACATTCCACAAGTGATCC
A07 SWUA1251 GATGCAACAAACCGTGACT AACCTCGCTATGGGAAGAC
C01 CB10277 ACAAATGCTTGAGTGATA TCTTCGTAAACTTGTTCTTGA
C09 SWUC664 CCTTGCAGCCATTCACTCTT AAACTAGGGTTTCCAGCCGT
C09 SWUC700 TGCCACTGTTTTGTTCTTGG CCGCTGTCTCCTCACTAACC

图2

人工合成六倍体的鉴别与特征 a: 六倍体S0-2; b: 新型甘蓝型油菜; c: 甘蓝型油菜中双11号; d: 白菜型油菜SWU07; e: 甘蓝(新型甘蓝型油菜的亲本); f和g分别表示六倍体S0、S1代有丝分裂中期染色体荧光原位杂交; h: 六倍体与甘蓝杂交F1代杂种染色体荧光原位杂交(红色-C基因组染色体, 蓝色为A基因组染色体; 白色-CentBr1信号, 绿色-CentBr2信号, CentBr1和CentBr2为着丝粒重复序列; C基因组特异序列探针来自BAC克隆BNIH 123L05 [28]); i: 甘蓝型油菜与白菜型油菜杂交后代的分子标记鉴定结果(P1为白菜型油菜SWU07, P2为甘蓝型油菜中双11号, 引物为QW156); j和k分别为六倍体与三倍体的花粉粒染色结果, 饱满且着色深的为可育花粉粒; l和m分别为六倍体(左)与甘蓝型油菜中双11号(右)的花朵和花蕾大小比较; n: 甘蓝花粉在六倍体柱头上授粉6 h后花粉管的伸长和生长。"

表2

六倍体各世代结实性调查"

六倍体世代
Generation
自交结实性
Seed setting of self
pollination (seeds pod-1)
天然结实性
Seed setting of open pollination (seeds pod-1)
S0 4.2±2.16 8.2±2.41
S1 5.9±3.02 6.3±2.84
S2 6.3±3.60 9.3±2.62

表3

六倍体与甘蓝的可交配性"

杂交组合
Cross
授粉花蕾数
Bud number
pollinated
结角数
Pod number
结实数
Seed number
结角率
Pod setting rate
(mean±SD)
结实率
Seed setting rate
(mean±SD)
AAAACC × CC (正交)
S0 362 168 6 0.46±0.13 0.04±0.31
S1 2234 1009 50 0.45±0.28 0.05±0.26
S2 2290 908 49 0.40±0.36 0.05±0.29
CC × AAAACC (反交)
S0 105 50 3 0.48±0.19 0.06±0.25
S1 2166 1042 35 0.48±0.41 0.03±0.34
S2 391 143 8 0.37±0.27 0.06±0.28
[1] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P, . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[2] Flannery M L, Mitchell F J, Coyne S, Kavanagh T A, Burke J I, Salamin N, Dowding P, Hodkinson T R . Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet, 2006,113:1221-1231.
doi: 10.1007/s00122-006-0377-0 pmid: 16909279
[3] Nagaharu U . Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935: 389-452.
[4] Siemens J . Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance into the oilseed rape gene pool. Czech J Genet Plant, 2002,38:3-4.
[5] 周庆红, 周灿, 范淑英 . 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015, ( 2):165-170.
doi: 10.11937/bfyy.201502047
Zhou Q H, Zhou C, Fan S Y . Research advance in application of distant hybridization on breeding of Brassica crops. Nor Hortic, 2015, ( 2):165-170 (in Chinese with English abstract).
doi: 10.11937/bfyy.201502047
[6] Mei J, Fu Y, Qian L, Xu X, Li J, Qian W . Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed, 2011,130:333-337.
doi: 10.1111/j.1439-0523.2011.01850.x
[7] Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C . Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006,113:49-54.
doi: 10.1007/s00122-006-0269-3 pmid: 16604336
[8] Mei J, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W . Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011,177:393-399.
[9] Li Q F, Zhou Q H, Mei J Q, Zhang Y J, Li J N, Li Z Y, Ge X H, Xiong Z Y, Huang Y J, Qian W . Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Mol Breed, 2014,34:1955-1963.
[10] 李勤菲, 钱伟, 贺亚军 . 甘蓝型油菜与甘蓝杂交的亲和性分析. 西南大学学报: 自然科学版, 2016,38(10):1-7.
doi: 10.13718/j.cnki.xdzk.2016.10.001
Li Q F, Qian W, He Y J . Crossability between Brassica napus and B. oleracea. J Southwest Univ (Nat Sci Edn), 2016,38(10):1-7 (in Chinese with English abstract).
doi: 10.13718/j.cnki.xdzk.2016.10.001
[11] Girke A, Schierholt A, Becker H C . Extending the rapeseed gene pool with resynthesized Brassica napus: II. Heterosis. Theor Appl Genet, 2012,124:1017-1026.
[12] Eickermann M, Ulber B, Vidal S . Resynthesized lines and cultivars ofBrassica napus L. provide sources of resistance to the cabbage stem weevil(Ceutorhynchus pallidactylus (Mrsh.)). B Entomol Res Ceutorhynchus pallidactylus, 2011,101:287-294.
[13] Fu D H, Qian W, Zou J, Meng J L . Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8
[14] 冯午, 陈耀华 . 甘蓝与白菜种间杂交的双二倍体后代. 园艺学报, 1981,8:37-40.
Feng W, Chen Y H . Artificial amphidiploids obtained in an interspecific cross. Acta Hortic Sin, 1981,8:37-40 (in Chinese with English abstract).
[15] 文雁成, 鲁丽萍, 张书芬, 王建平, 朱家成, 何俊平, 赵磊, 曹金华 . 利用十字花科种间杂交创造甘蓝型油菜种质资源的研究. 河南农业科学, 2014,43:30-34.
doi: 10.3969/j.issn.1004-3268.2014.06.007
Wen Y C, Lu L P, Zhang S F, Wang J P, Zhu J C, He J P, Zhao L, Cao J H . Novel germplasm creation in Brassica napus by Cruciferous interspecific hybridization. J Henan Agric Sci, 2014,43:30-34 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2014.06.007
[16] 王爱凡, 康雷, 李鹏飞, 李再云 . 我国甘蓝型油菜远缘杂交和种质创新研究进展. 中国油料作物学报, 2016,38:691-698.
doi: 10.7505/j.issn.1007-9084.2016.05.021
Wang A F, Kang L, Li P F, Li Z Y . Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin J Oil Crop Sci, 2016,38:691-698 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2016.05.021
[17] 张晓伟, 高睦枪, 原玉香, 耿建峰, 文雁成, 张书芬, 栗根义 . 人工合成甘蓝型油菜研究. 河南农业科学, 2001, ( 2):7-10.
doi: 10.3969/j.issn.1004-3268.2001.02.002
Zhang X W, Gao M Q, Yuan Y X, Geng J F, Wen Y C, Zhang S F, Li G Y . Studies on artificially synthesized B. napus L. J Henan Agric Sci, 2001, ( 2):7-10 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2001.02.002
[18] Ripley V L, Beversdorf W D . Development of self-incompatible Brassica napus:(I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breed, 2003,122:1-5.
[19] Li Q, Mei J, Zhang Y, Li J, Ge X, Li Z, Qian W . A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea. Theor Appl Genet, 2013,126:2073-2080.
[20] Zhou Y, Scarth R . Microspore culture of hybrids between Brassica napus and B. campestris. Acta Bot Sin, 1995,37:848-855.
[21] Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon R J, Qian W, Friedt W . Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet, 2015,128:639-644.
[22] 姚行成, 葛贤宏, 李再云 . 甘蓝型油菜与Brassica maurorum的异源六倍体后代及BC2细胞学分析. 中国油料作物学报, 2012,34:16-20.
Yao X Y, Ge X H, Li Z Y . Cytology of Brassica allohexaploids and BC2 progenies from B. napus and B. Maurorum. Chin J Oil Crop Sci, 2012,34:16-20 (in Chinese with English abstract).
[23] Li Z, Liu H L, Luo P . Production and cytogeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995,91:131-136.
[24] Xiong Z, Pires J C . Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011,187:37-49.
[25] 吴巧娟, 肖松华, 刘剑光, 狄佳春, 许乃银, 陈旭升, 殷剑美 . 棉花远缘杂交育种研究进展及发展对策. 棉花科学, 2006,28:3-6.
doi: 10.3969/j.issn.2095-3143.2006.05.001
Wu Q S, Xiao S H, Liu J G, Di J C, Xu N Y, Chen X S, Yin J M . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Cotton Sci, 2006,28:3-6 (in Chinese with English abstract).
doi: 10.3969/j.issn.2095-3143.2006.05.001
[26] 蔡得田, 袁隆平, 卢兴桂 . 二十一世纪水稻育种新战略: II.利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001,27:110-116.
doi: 10.3321/j.issn:0496-3490.2001.01.019
Cai D T, Yuan L P, Lu X G . A new strategy of rice breeding in the 21st century: II. Searching a new path way of rice breeding by utilization of double het erosis of wide cross and poly ploidization. Acta Agron Sin, 2001,27:110-116 (in Chinese with English abstract).
doi: 10.3321/j.issn:0496-3490.2001.01.019
[27] 李辛雷, 陈发棣, 赵宏波 . 菊属植物远缘杂交亲和性研究. 园艺学报, 2008,35:257-262.
doi: 10.3321/j.issn:0513-353X.2008.02.016
Li X L, Chen F D, Zhao H B . Compatibility of interspecific cross in dendranthema genus. Acta Hortic Sin, 2008,35:257-262 (in Chinese with English abstract).
doi: 10.3321/j.issn:0513-353X.2008.02.016
[28] 吴江生, 石淑稳, 周永明, 刘后利 . 甘蓝型双低油菜品种华双3号的选育和研究. 华中农业大学学报, 1999,18:1-4.
doi: 10.3321/j.issn:1000-2421.1999.01.001
Wu J S, Shi S W, Zhou Y M, Liu H L . Breeding and studies of hua double 3 (Brassica napus L.). J Huazhong Agric Univ, 1999,18:1-4 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-2421.1999.01.001
[29] Udall J A, Quijada P A, Polewicz H, Vogelzang R, Osborn T C . Phenotypic effects of introgressing chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci, 2004,44:1990-1996.
doi: 10.2135/cropsci2004.1990
[30] Gómezcampo C . Biology of Brassica Coenospecies. Elsevier, 1999.
[31] Meng J L, Shi S W, Li G, Li Z Y, Qu X S . The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris(AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333
[32] Rahman M H . Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472.
[33] 殷家明, 陈树忠, 唐章林, 谌利, 李加纳 . 黄籽羽衣甘蓝和白菜型油菜杂交再合成甘蓝型油菜研究. 西南农业学报, 2004,17:149-151.
doi: 10.3969/j.issn.1001-4829.2004.02.004
Yin J M, Chen S Z, Tang Z L, Chen L, Li J N . Resynthesis of Brassica napus through interspecific hybridization between yellow-seeded B. oleracea var. acephala and B. campestris. J Southwest Agric Sci, 2004,17:149-151 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4829.2004.02.004
[34] 张国庆, 唐桂香, 周伟军 . 白菜型油菜和甘蓝杂交子房培养初步研究. 中国农业科学, 2003,36:1409-1413.
doi: 10.3321/j.issn:0578-1752.2003.11.032
Zhang G Q, Tang G X, Zhou W J . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Sci Agric Sin, 2003,36:1409-1413 (in Chinese with English abstract).
doi: 10.3321/j.issn:0578-1752.2003.11.032
[35] 邢少辰, 周开达 . 特异同源多倍体水稻自交后代的遗传研究. 四川农业大学学报, 2000,18:308-310.
doi: 10.3969/j.issn.1000-2650.2000.04.006
Xing S C, Zhou D K . A genetic study on the yield characters of hybrid populations in naked barley. J Sichuan Agric Univ, 2000,18:308-310 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-2650.2000.04.006
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!