作物学报 ›› 2019, Vol. 45 ›› Issue (2): 188-195.doi: 10.3724/SP.J.1006.2019.84055
岳芳1,汪雷1,陈燕桂1,忻晓霞3,李勤菲1,2,梅家琴1,熊志勇3,*(),钱伟1,*()
Fang YUE1,Lei WANG1,Yan-Gui CHEN1,Xiao-Xia XIN3,Qin-Fei LI1,2,Jia-Qin MEI1,Zhi-Yong XIONG3,*(),Wei QIAN1,*()
摘要:
利用亲本种的遗传变异是改良油菜的重要途径, 本研究提出一种利用甘蓝拓宽甘蓝型油菜遗传多样性的新方法。以甘蓝型油菜(A nA nC nC n)品种中双11号为母本, 与白菜型油菜(A rA r)品系SWU07杂交, 经染色体加倍获得异源六倍体(A rA rA nA nC nC n), 再与甘蓝(C oC o)杂交, 创建出具有亲本种遗传成分的新型甘蓝型油菜(A rA nC nC o)。该六倍体连续3个世代核型稳定, 各世代中的自交和自由授粉结实率无显著差异, 花粉育性在94.6%~98.8%之间, 3个世代自交平均结实率为每角果5.47粒, 自由授粉平均结实率为每角果7.93粒; 各世代六倍体(A rA rA nA nC nC n)与不同类型甘蓝杂交平均结实率分别为每角果0.05、0.04、0.05粒, 世代间无显著差异, 且六倍体与栽培、野生甘蓝杂交结实性无显著差异, 可交配性不受六倍体世代及甘蓝类型的影响。尽管该六倍体与甘蓝可交配性较低, 但仍可在田间条件下成功杂交, 获得新型甘蓝型油菜(A rA nC nC o), 表明以A rA rA nA nC nC n六倍体为桥梁与甘蓝杂交, 是一种有效导入甘蓝遗传成分、创建新型甘蓝型油菜的新方法。
[1] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P, . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[2] |
Flannery M L, Mitchell F J, Coyne S, Kavanagh T A, Burke J I, Salamin N, Dowding P, Hodkinson T R . Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet, 2006,113:1221-1231.
doi: 10.1007/s00122-006-0377-0 pmid: 16909279 |
[3] | Nagaharu U . Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935: 389-452. |
[4] | Siemens J . Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance into the oilseed rape gene pool. Czech J Genet Plant, 2002,38:3-4. |
[5] |
周庆红, 周灿, 范淑英 . 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015, ( 2):165-170.
doi: 10.11937/bfyy.201502047 |
Zhou Q H, Zhou C, Fan S Y . Research advance in application of distant hybridization on breeding of Brassica crops. Nor Hortic, 2015, ( 2):165-170 (in Chinese with English abstract).
doi: 10.11937/bfyy.201502047 |
|
[6] |
Mei J, Fu Y, Qian L, Xu X, Li J, Qian W . Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed, 2011,130:333-337.
doi: 10.1111/j.1439-0523.2011.01850.x |
[7] |
Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C . Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006,113:49-54.
doi: 10.1007/s00122-006-0269-3 pmid: 16604336 |
[8] | Mei J, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W . Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011,177:393-399. |
[9] | Li Q F, Zhou Q H, Mei J Q, Zhang Y J, Li J N, Li Z Y, Ge X H, Xiong Z Y, Huang Y J, Qian W . Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Mol Breed, 2014,34:1955-1963. |
[10] |
李勤菲, 钱伟, 贺亚军 . 甘蓝型油菜与甘蓝杂交的亲和性分析. 西南大学学报: 自然科学版, 2016,38(10):1-7.
doi: 10.13718/j.cnki.xdzk.2016.10.001 |
Li Q F, Qian W, He Y J . Crossability between Brassica napus and B. oleracea. J Southwest Univ (Nat Sci Edn), 2016,38(10):1-7 (in Chinese with English abstract).
doi: 10.13718/j.cnki.xdzk.2016.10.001 |
|
[11] | Girke A, Schierholt A, Becker H C . Extending the rapeseed gene pool with resynthesized Brassica napus: II. Heterosis. Theor Appl Genet, 2012,124:1017-1026. |
[12] | Eickermann M, Ulber B, Vidal S . Resynthesized lines and cultivars ofBrassica napus L. provide sources of resistance to the cabbage stem weevil(Ceutorhynchus pallidactylus (Mrsh.)). B Entomol Res Ceutorhynchus pallidactylus, 2011,101:287-294. |
[13] |
Fu D H, Qian W, Zou J, Meng J L . Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8 |
[14] | 冯午, 陈耀华 . 甘蓝与白菜种间杂交的双二倍体后代. 园艺学报, 1981,8:37-40. |
Feng W, Chen Y H . Artificial amphidiploids obtained in an interspecific cross. Acta Hortic Sin, 1981,8:37-40 (in Chinese with English abstract). | |
[15] |
文雁成, 鲁丽萍, 张书芬, 王建平, 朱家成, 何俊平, 赵磊, 曹金华 . 利用十字花科种间杂交创造甘蓝型油菜种质资源的研究. 河南农业科学, 2014,43:30-34.
doi: 10.3969/j.issn.1004-3268.2014.06.007 |
Wen Y C, Lu L P, Zhang S F, Wang J P, Zhu J C, He J P, Zhao L, Cao J H . Novel germplasm creation in Brassica napus by Cruciferous interspecific hybridization. J Henan Agric Sci, 2014,43:30-34 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2014.06.007 |
|
[16] |
王爱凡, 康雷, 李鹏飞, 李再云 . 我国甘蓝型油菜远缘杂交和种质创新研究进展. 中国油料作物学报, 2016,38:691-698.
doi: 10.7505/j.issn.1007-9084.2016.05.021 |
Wang A F, Kang L, Li P F, Li Z Y . Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin J Oil Crop Sci, 2016,38:691-698 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2016.05.021 |
|
[17] |
张晓伟, 高睦枪, 原玉香, 耿建峰, 文雁成, 张书芬, 栗根义 . 人工合成甘蓝型油菜研究. 河南农业科学, 2001, ( 2):7-10.
doi: 10.3969/j.issn.1004-3268.2001.02.002 |
Zhang X W, Gao M Q, Yuan Y X, Geng J F, Wen Y C, Zhang S F, Li G Y . Studies on artificially synthesized B. napus L. J Henan Agric Sci, 2001, ( 2):7-10 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2001.02.002 |
|
[18] | Ripley V L, Beversdorf W D . Development of self-incompatible Brassica napus:(I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breed, 2003,122:1-5. |
[19] | Li Q, Mei J, Zhang Y, Li J, Ge X, Li Z, Qian W . A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea. Theor Appl Genet, 2013,126:2073-2080. |
[20] | Zhou Y, Scarth R . Microspore culture of hybrids between Brassica napus and B. campestris. Acta Bot Sin, 1995,37:848-855. |
[21] | Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon R J, Qian W, Friedt W . Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet, 2015,128:639-644. |
[22] | 姚行成, 葛贤宏, 李再云 . 甘蓝型油菜与Brassica maurorum的异源六倍体后代及BC2细胞学分析. 中国油料作物学报, 2012,34:16-20. |
Yao X Y, Ge X H, Li Z Y . Cytology of Brassica allohexaploids and BC2 progenies from B. napus and B. Maurorum. Chin J Oil Crop Sci, 2012,34:16-20 (in Chinese with English abstract). | |
[23] | Li Z, Liu H L, Luo P . Production and cytogeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995,91:131-136. |
[24] | Xiong Z, Pires J C . Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011,187:37-49. |
[25] |
吴巧娟, 肖松华, 刘剑光, 狄佳春, 许乃银, 陈旭升, 殷剑美 . 棉花远缘杂交育种研究进展及发展对策. 棉花科学, 2006,28:3-6.
doi: 10.3969/j.issn.2095-3143.2006.05.001 |
Wu Q S, Xiao S H, Liu J G, Di J C, Xu N Y, Chen X S, Yin J M . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Cotton Sci, 2006,28:3-6 (in Chinese with English abstract).
doi: 10.3969/j.issn.2095-3143.2006.05.001 |
|
[26] |
蔡得田, 袁隆平, 卢兴桂 . 二十一世纪水稻育种新战略: II.利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001,27:110-116.
doi: 10.3321/j.issn:0496-3490.2001.01.019 |
Cai D T, Yuan L P, Lu X G . A new strategy of rice breeding in the 21st century: II. Searching a new path way of rice breeding by utilization of double het erosis of wide cross and poly ploidization. Acta Agron Sin, 2001,27:110-116 (in Chinese with English abstract).
doi: 10.3321/j.issn:0496-3490.2001.01.019 |
|
[27] |
李辛雷, 陈发棣, 赵宏波 . 菊属植物远缘杂交亲和性研究. 园艺学报, 2008,35:257-262.
doi: 10.3321/j.issn:0513-353X.2008.02.016 |
Li X L, Chen F D, Zhao H B . Compatibility of interspecific cross in dendranthema genus. Acta Hortic Sin, 2008,35:257-262 (in Chinese with English abstract).
doi: 10.3321/j.issn:0513-353X.2008.02.016 |
|
[28] |
吴江生, 石淑稳, 周永明, 刘后利 . 甘蓝型双低油菜品种华双3号的选育和研究. 华中农业大学学报, 1999,18:1-4.
doi: 10.3321/j.issn:1000-2421.1999.01.001 |
Wu J S, Shi S W, Zhou Y M, Liu H L . Breeding and studies of hua double 3 (Brassica napus L.). J Huazhong Agric Univ, 1999,18:1-4 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-2421.1999.01.001 |
|
[29] |
Udall J A, Quijada P A, Polewicz H, Vogelzang R, Osborn T C . Phenotypic effects of introgressing chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci, 2004,44:1990-1996.
doi: 10.2135/cropsci2004.1990 |
[30] | Gómezcampo C . Biology of Brassica Coenospecies. Elsevier, 1999. |
[31] | Meng J L, Shi S W, Li G, Li Z Y, Qu X S . The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris(AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333 |
[32] | Rahman M H . Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472. |
[33] |
殷家明, 陈树忠, 唐章林, 谌利, 李加纳 . 黄籽羽衣甘蓝和白菜型油菜杂交再合成甘蓝型油菜研究. 西南农业学报, 2004,17:149-151.
doi: 10.3969/j.issn.1001-4829.2004.02.004 |
Yin J M, Chen S Z, Tang Z L, Chen L, Li J N . Resynthesis of Brassica napus through interspecific hybridization between yellow-seeded B. oleracea var. acephala and B. campestris. J Southwest Agric Sci, 2004,17:149-151 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4829.2004.02.004 |
|
[34] |
张国庆, 唐桂香, 周伟军 . 白菜型油菜和甘蓝杂交子房培养初步研究. 中国农业科学, 2003,36:1409-1413.
doi: 10.3321/j.issn:0578-1752.2003.11.032 |
Zhang G Q, Tang G X, Zhou W J . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Sci Agric Sin, 2003,36:1409-1413 (in Chinese with English abstract).
doi: 10.3321/j.issn:0578-1752.2003.11.032 |
|
[35] |
邢少辰, 周开达 . 特异同源多倍体水稻自交后代的遗传研究. 四川农业大学学报, 2000,18:308-310.
doi: 10.3969/j.issn.1000-2650.2000.04.006 |
Xing S C, Zhou D K . A genetic study on the yield characters of hybrid populations in naked barley. J Sichuan Agric Univ, 2000,18:308-310 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-2650.2000.04.006 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|