欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 949-956.doi: 10.3724/SP.J.1006.2019.81081

• 研究简报 • 上一篇    下一篇

大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应

郭丽丽1,*,张茜茜1,*,郝立华1,*(),乔雅君2,陈文娜3,卢云泽3,李菲1,曹旭1,王清涛3,郑云普1,*()   

  1. 1 河北工程大学水利水电学院, 河北邯郸 056038
    2 河北雄安新区生态环境局, 河北雄安 071700
    3 河北工程大学园林与生态工程学院, 河北邯郸 056038
  • 收稿日期:2018-11-04 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 郭丽丽,张茜茜,郝立华,郑云普
  • 作者简介:E-mail: guolili123920@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0300905);河北省引进留学人员资助项目(CN201702);河北省创新能力提升计划科技研发平台建设专项(18965307H);河北省研究生创新能力资助项目(CXZZSS2018077);干旱气象科学研究基金项目(IAM201702)

Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration

Li-Li GUO1,*,Xi-Xi ZHANG1,*,Li-Hua HAO1,*(),Ya-Jun QIAO2,Wen-Na CHEN3,Yun-Ze LU3,Fei LI1,Xu CAO1,Qing-Tao WANG3,Yun-Pu ZHENG1,*()   

  1. 1 School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, Hebei, China
    2 Ecology and Environment Bureau of Xiong’an New District in Hebei, Xiong’an 071700, Hebei, China;
    3 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
  • Received:2018-11-04 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Li-Li GUO,Xi-Xi ZHANG,Li-Hua HAO,Yun-Pu ZHENG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300905);the Hebei Province Foundation for Returnees(CN201702);the Innovation Capability Upgrading Plan of Hebei Province(18965307H);the Hebei Province Graduate Student Innovation Ability Subsidized Project(CXZZSS2018077);the Drought Meteorological Science Research Foundation Project(IAM201702)

摘要:

探究大气CO2浓度倍增条件下冬小麦气体交换参数对高温干旱及复水过程的生理响应机制, 有助于提高生态过程模型的模拟精度, 更加准确地预测全球气候变化对农田生态系统初级生产力及其生态服务功能的影响。利用4个可精准控制CO2浓度和温度的大型人工气候室, 研究了CO2浓度倍增条件下高温干旱及复水过程对冬小麦气孔特征和气体交换参数的影响。结果表明, CO2浓度倍增(E)导致冬小麦远轴面气孔密度增加、气孔宽度减小、气孔空间分布规则程度降低, 但提高叶片的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)。高温干旱(HD)使叶片气孔长度、密度、周长和面积减小, 导致叶片气体交换参数均显著下降。然而, 高CO2浓度及高温干旱(EHD)导致气体交换参数下降幅度相对较小, 表明高CO2浓度对高温干旱具有一定的缓解作用。此外, 干旱复水后, 不同处理条件下冬小麦叶片气体交换参数均有所升高, 但高温干旱下叶片的气体交换参数仍未能恢复到对照水平, 暗示光合器官可能在高温干旱时遭到损伤和破坏。

关键词: 大气CO2浓度, 高温干旱处理, 复水, 气体交换参数, 气孔特征

Abstract:

Understanding the responsible mechanisms of crops to combined environmental stresses such as elevated CO2 concentration, climate warming, and drought is critical to improve the accuracy of ecological process models, and thus accurately predict the impacts of global climate change on the Net Primary Production (NPP) and ecosystem service function of farmlands. Four environmental growth chambers accurately controlling CO2 concentration and temperature were employed to investigate the combined effects of high temperature and drought stresses on the stomatal traits and leaf gas exchange during re-watering under doubling CO2 concentration. We found that elevated CO2 concentration (E) increased the stomatal density, decreased the stomatal width and made the spatial distribution pattern of stomata irregular on the abaxial leaf surface, while enhanced the net photosynthetic rates (Pn), stomatal conductance (Gs), transpiration rates (Tr), and water use efficiency (WUE). The stomatal length, width, perimeter and area were substantially decreased under the combined high temperature and drought stress (HD), resulting in dramatic decline of leaf gas exchange parameters. Doubling CO2 concentration made the leaf gas exchange parameters enhanced under the HD treatment, suggesting that elevated CO2 concentration can compensate the negative impacts of heat and drought on the physiological processes of winter wheat. Additionally, the leaf gas exchange of winter wheat subjected to the high temperature and drought stresses was enhanced after re-watering, but these parameters were still lower than those of Control, suggesting that the photosynthetic apparatus may be damaged by the combined high temperature and drought stresses.

Key words: CO2 concentration, high temperature and drought, re-watering, gas exchange parameters, stomatal traits

表1

CO2浓度倍增下高温干旱对冬小麦叶片气孔参数的影响"

气孔参数
Stomatal parameter
叶面
Leaf surface
对照
Control
CO2倍增
E
高温×干旱
HD
CO2×高温×干旱
EHD
P
P-value
气孔密度
Stomatal density (No. mm-2)
近轴面Adaxial 53.7±1.5 c 53.5±4.6 c 74.1±5.5 a 64.6±8.2 b 0.001
远轴面Abaxial 33.1±1.1 b 41.7±1.2 a 44.1±8.5 a 48.1±2.9 a 0.008
气孔长度
Stomatal length (μm)
近轴面Adaxial 37.3±3.2 a 38.1±1.8 a 31.7±3.3 b 36.1±2.0 a 0.007
远轴面Abaxial 34.1±2.7 ab 31.9±2.8 b 31.9±3.9 b 36.0±2.4 a 0.003
气孔宽度
Stomatal width (μm)
近轴面Adaxial 3.5±0.6 a 3.1±0.4 b 3.1±0.5 b 2.6±0.3 c 0.000
远轴面Abaxial 2.8±0.3 ab 3.1±0.4 a 2.6±0.4 b 2.6±0.4 b 0.041
气孔周长
Stomatal perimeter (μm)
近轴面Adaxial 77.5±7.2 a 79.6±3.7 a 67.3±6.2 b 76.2±7.4 a 0.007
远轴面Abaxial 71.6±6.0 ab 66.5±6.2 bc 65.8±7.6 c 76.2±4.8 a 0.005
气孔面积
Stomatal area (μm2)
近轴面Adaxial 119.4±18.7 a 109.7±11.7 a 87.3±11.0 b 94.3±11.8 b 0.000
远轴面Abaxial 87.0±12.8 ab 92.2±14.9 a 79.7±16.2 b 95.8±14.8 a 0.067
气孔形状指数
Stomatal shape index (%)
近轴面Adaxial 14.0±1 a 13.1±1 b 13.9±1 a 13.0±1 b 0.002
远轴面Abaxial 13.0±1 bc 14.5±1 a 13.5±1 b 12.8±1 c 0.001

图1

大气CO2浓度倍增下高温干旱处理对冬小麦叶片近轴面(a)和远轴面(b)气孔空间分布格局影响 图中的Upper 95%表示95%置信区间上界线, Lower 95%表示95%置信区间下界线。Lhat(d)表示最小邻域距离, 即当Lhat(d)值小于95%置信区间时, 气孔在该尺度下为规则分布, 且Lhat(d)的最小值越小, 则气孔空间分布越规则。"

图2

大气CO2浓度倍增下高温干旱及复水对冬小麦净光合速率的影响"

图3

大气CO2浓度倍增下高温干旱及复水对冬小麦气孔导度的影响"

图4

大气CO2浓度倍增下高温干旱及复水对冬小麦蒸腾速率的影响"

图5

大气CO2浓度倍增下高温干旱及复水对冬小麦水分利用效率的影响"

[1] IPCC. Climate Change:the Physical Science Basis.Cambridge: Cambridge University Press, 2007.
[2] Lin E, Xiong W, Hui J, Xu Y L, Li Y, Bai, L P, Xie, L Y . Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc London Ser B, 2005,360:2149-2154.
doi: 10.1098/rstb.2005.1743 pmid: 16433100
[3] 司福艳, 乔匀周, 姜净卫, 董宝娣, 师长海, 刘孟雨 . 干旱高温及高浓度CO2复合胁迫对冬小麦生长的影响. 应用生态学报, 2014,25:2605-2612.
Si F Y, Qiao Y Z, Jiang J W, Dong B D, Shi C H, Liu M Y . Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat. Chin J Appl Ecol, 2014,25:2605-2612 (in Chinese with English abstract).
[4] Salvucci M E , Crafes-brander S J. Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiol Plant, 2004,120:179-186.
doi: 10.1111/j.0031-9317.2004.0173.x pmid: 15032851
[5] Collins W D, Craig A P, Truesdale J E, Divittari A V, Jones A D, Bond-Lambery B, Calvin K V, Edmond J A, Kim S H, Thomson A M, Patel P, Zhou Y, Mao J, Shi X, Thornton P E, Chini L P, Hrrtt G C . The integrated earth system model (iESM): formulation and functionality. Geosci Model Dev, 2015,8:2203-2219.
doi: 10.5194/gmd-8-2203-2015
[6] Shi Y F, Zhang X S . The impact of climate change on the surface water resources in arid area of Northwest China and future trend. Sci China, Series B Chem, 1995,25:968-977.
[7] 张存杰, 王胜, 宋艳玲, 蔡雯悦 . 我国北方地区冬小麦干旱灾害风险评估. 干旱气象, 2014,32:883-893.
Zhang C J, Wang S, Song Y L, Cai W Y . Research of drought risk assessment for winter wheat in Northern China. J Arid Meteorol, 2014,32:883-893 (in Chinese with English abstract).
[8] Chen Y J, Yu J J, Huang B R . Effects of elevated CO2 concentration on water relations and photosynthetic responses to drought stress and recovery during rewatering in Tall Fescue. J Am Soc Hort Sci, 2015,140:19-26.
[9] Nilsen E T, Orcutt D M . The physiology of Plants under Stress. New York: John Wiley  Sons, Ins., 2000. pp 105-109.
[10] Reddy, A R ,Rasineni G K, Raghavendra A S . The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci, 2010,99, 46-57.
doi: 10.1371/journal.pone.0011405
[11] Xu M . The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). J Plant Physiol, 2015,184:89-97.
[12] 胡田田, 康绍忠 . 植物抗旱性中的补偿效应及其在农业节水中的应用. 生态学报, 2005,25:885-891.
Hu T T, Kang S Z . The compensatory effect in drought resistance of plants and its application in water-saving agriculture. Acta Ecol Sin, 2005,25:885-891 (in Chinese with English abstract).
[13] 倪胜利, 李兴茂, 王亚翠, 任根深 . 旱后复水对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2018,37(11):20-25.
Ni S L, Li X M, Wang Y C, Ren G S . Effects of rewatering after drought on growth and water use efficiency of winter wheat. J Irrig Drain, 2018,37(11):20-25 (in Chinese with English abstract).
[14] Robredo A ,Pérez-lópez U, Maza H S D L, González-Moro B, Lacueata M, Mena-Petite A, Muñoz-Rueda A . Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot, 2007,59:252-263.
doi: 10.1016/j.envexpbot.2006.01.001
[15] 廖建雄, 王根轩 . 干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响. 应用生态学报, 2002,13:547-550.
Liao J X, Wang G X . Effects of drought, CO2 concentration and temperature increasing on photosynthesis rate, evapotranspiration, and water use efficiency of spring wheat. Chin J Appl Ecol, 2002,13:547-550 (in Chinese with English abstract).
[16] Zheng Y P, Xu M, Hou R X, Shen R C, Qiu S, Ouyang Z . Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecol Evol, 2013,3:3095-3111.
doi: 10.1002/ece3.674 pmid: 24101997
[17] Xu L X, Yu J J, Han L B, Huang B R . Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environ Exp Bot, 2013,89:28-35.
doi: 10.1016/j.envexpbot.2012.12.001
[18] 李继文, 王进鑫, 张慕黎, 吉增宝, 薛设 . 干旱及复水对刺槐叶水势的影响. 西北林学院学报, 2009,24(3):33-36.
Li J W, Wang J X, Zhang M L, Ji Z B, Xu S . Effect of drought and rewater on leaf water potential of Robinia pseudoacacia. J Northwest For Univ, 2009,24(3):33-36 (in Chinese with English abstract).
[19] 叶波, 吴永波, 邵维, 杨静 . 高温干旱复合处理及复水对构树 (Broussonetia papyrifera) 幼苗光合特性和叶绿素荧光参数的影响. 生态学杂志, 2014,33:2343-2349.
Ye B, Wu Y B, Shao W, Yang J . Effects of combined stress of elevated temperature and drought and of re-watering on the photosynthetic characteristics and chlorophyll fluorescence parameters of Broussonetia papyrifera seedlings. Chin J Ecol, 2014,33:2343-2349 (in Chinese with English abstract).
[20] Inamullahai I, Isoda A . Adaptive responses of soybean and cotton to water stress: I. Transpiration changes in relation to stomatal area and stomatal conductance. Plant Prod Sci, 2005,8:16-26.
doi: 10.1626/pps.8.131
[21] Kang S Z, Zhang F C, Hu X T, Hang J H . Benefits of CO2 enrichment on crop plants are modified by soil water. Plant Soil, 2002,238:69-77.
doi: 10.1023/A:1014244413067
[22] 于海秋, 武志海, 沈秀瑛, 徐克章 . 水分胁迫下玉米叶片气孔密度、大小及显微结构的变化. 吉林农业大学学报, 2003,25:239-242.
Yu H Q, Wu Z H, Shen X Y, Xu K Z . Changes of stomatal density, length, width and microstructure of maize leaves under water stress. J Jilin Agric Univ, 2003,25:239-242 (in Chinese with English abstract).
[23] 朱玉, 黄磊, 郑云普, 郝立华, 姜国斌, 王贺新, 李根柱, 张自川, 弓晓杰 . 高温对高丛越橘叶片气孔特征和气体交换参数的影响. 果树学报, 2016,33:444-456.
Zhu Y, Huang L, Zheng Y P, Hao L H, Jiang G B, Wang H X, Li G Z, Zhang Z C, Gong X J . Effects of high temperatures on leaf stomatal traits and gas exchanges of high bush blueberries. J Fruit Sci, 2016,33:444-456 (in Chinese with English abstract).
[24] Wang W J, Duan B, Zhang Y . Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecol, 2012,213:47-55.
doi: 10.1007/s11258-011-0005-1
[25] Gan Y, Zhou L, Shen Z J, Shen Z X, Zhang Y Q, Wang G X . Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Bot Studies, 2010,51:325-336.
doi: 10.1007/s00280-006-0217-6
[26] 郑云普, 徐明, 王建书, 邱帅, 王贺新 . 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015,41:601-612.
Zheng Y P, Xu M, Wang J S, Qiu S, Wang H X . Responses of the stomatal traits and gas exchange of maize leaves to climate warming. Acta Agron Sin, 2015,41:601-612 (in Chinese with English abstract).
[27] 樊良新, 刘国彬, 薛萣, 杨婷, 张昌胜 . CO2浓度倍增及干旱胁迫对紫花苜蓿光合生理特性的协同影响. 草地学报, 2014,22(1):85-93.
Fan L X, Liu G B, Xue S, Yang T, Zhang C S . Synergistic effects of doubled CO2 concentration and drought stress on the photosynthetic characteristics of Medicago sativa. Acta Agrest Sin, 2014,22(1):85-93 (in Chinese with English abstract).
[28] 张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 陈斐, 雷俊 . CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017,35:306-312.
Zhang K, Wang R Y, Wang H L, Zhao H, Qi Y, Zhao F N, Chen F, Lei J . Effects of elevated CO2 concentration on growth and yield of spring wheat based on observational experiment in semi-arid area. J Arid Meteorol, 2017,35:306-312 (in Chinese with English abstract).
[29] Mittler R . Abiotic stress the field environment and stress combination. Trends Plant Sci, 2006,11:15-19.
doi: 10.1016/j.tplants.2005.11.002 pmid: 16359910
[30] 刘振山 . 小麦苗期干旱、高温和旱热共胁迫转录表达谱及ABD部分同源基因表达分化分析. 中国农业大学博士学位论文, 北京, 2015.
Liu Z S . Transcriptome Profiling and Differential Homeologous Genes Expression Analysis of Wheat (Triticum aestivum L.) seedlings During Drought Stress, Heat Stress and Their Combination . PhD Dissertation of China Agricultural University, Beijing,China, 2015 (in Chinese with English abstract).
[31] 李伏生, 康绍忠, 张富仓 . CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响. 应用生态学报, 2003,14:387-393.
Li F S, Kang S Z, Zhang F C . Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chin J Appl Ecol, 2003,14:387-393 (in Chinese with English abstract).
[32] Hamerlynck E P, Huxman T E, Loik M E, Smith S D . Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub,Larreatriden-tate. Plant Ecol, 2000,148:183-193.
[33] 刘璇, 吴永波, 邵维 . 高温干旱复合处理及复水对刺槐幼苗水分运输的影响. 生态科学, 2018,37(2):100-105.
Liu X, Wu Y B, Shao W . The combined stress of elevated temperature and drought and rewatering on water transportation of Robinia pseudoqcacia Linn. seedling. Ecol Sci, 2018,37(2):100-105 (in Chinese with English abstract).
[34] Wu D X, Wang G X, Bai Y F, Liao J X . Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 2004,104:493-507.
doi: 10.1016/j.agee.2004.01.018
[35] 徐俊增, 彭世彰, 魏征, 缴锡云 . 节水灌溉水稻叶片细胞间CO2浓度及气孔与非气孔限制. 农业工程学报, 2010,26(7):76-80.
Xu J Z, Peng S Z, Wei Z, Jiao X Y . Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation. Trans CSAE, 2010,26(7):76-80 (in Chinese with English abstract).
[36] Farquhar G D, Sharkey T D . Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982,33:317-345.
[1] 李菲,刘亮,张浩,王清涛,郭丽丽,郝立华,张茜茜,曹旭,梁伟佳,郑云普. CO2浓度对大豆叶片气孔特征和气体交换参数的影响[J]. 作物学报, 2018, 44(8): 1212-1220.
[2] 武海霞,郭丽丽,郝立华,张浩,王清涛,程东娟,彭正萍,李菲,张茜茜,李树彬,徐明,郑云普. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报, 2018, 44(10): 1570-1576.
[3] 郑云普,徐明,王建书,邱帅,王贺新. 玉米叶片气孔特征及气体交换过程对气候变暖的响应[J]. 作物学报, 2015, 41(04): 601-612.
[4] 朱娟娟, 梁银丽, Tremblay Nicolas. 不同水氮处理对玉米氮素诊断指标的影响[J]. 作物学报, 2011, 37(07): 1259-1265.
[5] 张绪成, 于显枫, 王红丽, 马一凡. 高大气CO2浓度下氮素对小麦叶片光合能量分配的调节[J]. 作物学报, 2011, 37(06): 1069-1076.
[6] 印志同,宋海娜,孟凡凡,许晓明,喻德跃. 大豆光合气体交换参数的QTL分析[J]. 作物学报, 2010, 36(1): 92-100.
[7] 张绪成,张福锁,于显枫,陈新平. 氮素对高大气CO2浓度下小麦叶片光合功能的影响[J]. 作物学报, 2010, 36(08): 1362-1370.
[8] 吴妍,张岁岐,刘小芳,山仑. 水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响[J]. 作物学报, 2010, 36(06): 1044-1049.
[9] 刘瑞显;郭文琦;陈兵林;周治国. 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J]. 作物学报, 2008, 34(09): 1598-1607.
[10] 林凡云;王士强;胡银岗;何蓓如. 糜子SAMS基因的克隆及其在干旱复水中的表达模式分析[J]. 作物学报, 2008, 34(05): 777-782.
[11] 罗宏海;张亚黎;张旺锋;白慧东;何在菊;杜明伟;张宏芝. 新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J]. 作物学报, 2008, 34(01): 171-174.
[12] 康公平;徐国云;陈志;徐孟亮;陈良碧. 茶陵普通野生稻光合特性研究[J]. 作物学报, 2007, 33(09): 1558-1562.
[13] 陈晓远;罗远培. 开花期复水对受旱冬小麦的补偿效应研究[J]. 作物学报, 2001, 27(04): 512-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!