欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1069-1076.doi: 10.3724/SP.J.1006.2011.01069

• 耕作栽培·生理生化 • 上一篇    下一篇

高大气CO2浓度下氮素对小麦叶片光合能量分配的调节

张绪成1,2,于显枫1,王红丽3,马一凡1   

  1. 1 甘肃省农业科学院 / 农业部西北作物抗旱栽培与耕作重点开放实验室,甘肃兰州 730070;2中国农业大学资源环境学院,北京 100193;3 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2010-11-16 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: E-mail: gszhangxuch@163.com, Tel: 0931-7612800
  • 基金资助:

    本研究由国家自然科学基金项目(30800668)资助。

Regulation of Nitrogen Level on Photosynthetic Energy Partitioning in Wheat Leaves under Elevated Atmospheric CO2 Concentration

ZHANG Xu-Cheng1,2,YU Xian-Feng1,WANG Hong-Li3,MA Yi-Fan1   

  1. 1 Key Laboratory of Northwest Crop Drought-Resistant Farming of Ministry of Agriculture / Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 2 College of Resources and Environment, China Agricultural University, Beijing 100193, China; 3College of Agronomy, Gansu agricultural University, Lanzhou 730070, China
  • Received:2010-11-16 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: E-mail: gszhangxuch@163.com, Tel: 0931-7612800

摘要: 探讨了施氮量对高大气CO2浓度下小麦功能叶光合能量传递与分配的影响,进而明确氮素对小麦叶片光合作用适应性下调的能量分配调节作用。采用开顶式气室盆栽法,通过测定小麦拔节期和抽穗期不同大气CO2浓度和施氮水平下的叶氮浓度、光合速率–胞间CO2浓度(PnCi)响应曲线和荧光动力学参数,测算光合电子传递速率和分配去向。与在正常CO2浓度(400 μmol mol-1)条件下相比,在高大气CO2浓度(760 μmol mol-1)下,小麦叶氮浓度显著下降,N200处理(200 mg kg-1)叶片抽穗期叶氮浓度的下降幅度较拔节期高335.7%。N200处理较N0处理(0 mg kg-1)提高小麦叶片光适应下PSII反应中心最大量子产额(Fv′/Fm′)、光化学效率(ΦPSII)和开放比例(qP),降低非光化学猝灭系数(NPQ)。高大气CO2浓度下,小麦叶片光化学反应的非环式光合电子传递速率(Jc)和Rubisco羧化速率(Vc)显著升高,而光呼吸的非环式光合电子传递速率(Jo)和Rubisco氧化速率(Vo)明显降低;施氮使JcJoVcVo值均呈上升趋势,而且JcVc达到显著差异。高大气CO2浓度下Jo/JcVo/Vc显著降低,施氮后小麦拔节期叶片Jo/JcVo/Vc降低,但抽穗期Jo/Jc升高而Vo/Vc无明显变化。叶氮浓度与小麦叶片JcJoVo均呈显著线性正相关,而且高大气CO2浓度下小麦叶片JcJoVo对氮浓度的敏感性降低。高大气CO2浓度下,小麦叶片PSII反应中心开放比例增加,非光化学耗能降低,更多的光合电子进入光化学过程;施氮后使小麦叶氮浓度增加,提高光合能力,改变了能量分配,这是高氮条件下光合作用适应性下调被缓解的一个关键因素。

关键词: 大气CO2浓度增高, 施氮量, 光合电子传递速率, 光能分配, 小麦

Abstract: The objective of this study was to understand the regulatory mechanism of nitrogen (N) application on photosynthetic acclimation under elevated atmospheric CO2 concentration. The ambient atmospheric CO2 concentration was 400 μmol mol−1, and the elevated CO2 concentration was 760 μmol mol−1, which was simulated with Top Open Chambers. Wheat (Triticum aestivum L.) cultivar Ningchun 4 was grown in pots under both CO2 concentrations and treated with low (0 mg pure N per kilogram soil, N0) and high (200 mg pure N per kilogram soil, N200) N application levels. The photosynthetic electron transport rate was estimated using the response curve between photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) and chlorophyll fluorescence parameters. The leaf nitrogen concentrations were also measured at jointing and heading stages. Compared to that under the ambient CO2 concentration, the leaf nitrogen concentration of wheat was decreased significantly under the elevated CO2 concentration, and the percentage of decrease in N200 treatment was 335.7% higher at heading than jointing stage. The values of maximal quantum yield under irradiance (Fv′/Fm′), actual PSII efficiency under irradiance (ΦPSII), photochemical fluorescence quenching (qP) were higher in N200 treatment than in N0 treatment; however, the value of non-photochemical fluorescence quenching (NPQ) was higher in N0 treatment than in N200 treatment. Under elevated atmospheric CO2 concentration, the electronic transport rate of photochemistry (Jc) and Rubisco carboxylation rates (Vc) were increased significantly, but the electronic transport rate of photorespiration (Jo) and Rubisco oxygenation rate (Vo) were decreased significantly. N application tended to promote the values of Jc, Jo, Vc, and Vo, especially for Jc and Vc, which had significant increase compared to those in N0 treatment. When the atmospheric CO2 concentration elevated from 400 μmol mol−1 to 760 μmol mol−1, the rations of Jo/Jc and Vo/Vc decreased significantly. Under the elevated atmospheric CO2 concentration, N application decreased Jo/Jc and Vo/Vc significantly at jointing stage, but increased Jo/Jc at heading stage and remained Vo/Vc with no significant difference. The leaf nitrogen concentration was positively correlated with Jc (P < 0.01), Jo, (P < 0.05) and Vo (P < 0.05), and the sensitivities of Jc, Jo, and Vo in response to leaf N concentration were decreased under elevated atmospheric CO2 concentration. The opening ratio of PSII reaction center was increased under elevated atmospheric CO2 concentration, and the non-photochemical energy dissipation was decreased simultaneously, resulting in more photosynthetic electron transported to photochemical process in wheat leaf. N application had a positively effect on photosynthetic function and changed its energy partitioning through increasing leaf N concentration. This might be one of the key reasons for photosynthesis acclimation of C3 plant to N sufficient application under elevated atmospheric CO2 concentration.

Key words: Elevated atmospheric CO2 concentration, Nitrogen application rate, Photosynthetic electron transport rate, Photosynthetic energy partition, Wheat

[1]Bernacchi C J, Calfapietra C, Davey P A, Scarascia-Mugnozza G E, Raines C A, Long S P, Wittig V E. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol, 2003, 159: 609–621
[2]Christian K. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol, 2006, 172: 393–411
[3]Paul M J, Pellny T K. Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot, 2003, 54: 539–547
[4]Karpinski S, Reynolds H, Kapinska B, Wingsle G, Creissen G, Mullineaux P. Systemic signaling and acclimation in response to excess exciation energy in Arabdopsis. Science, 1999, 284: 654–657
[5]Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351–372
[6]Daepp M, Nsberger J, Locher A. Nitrogen fertilization and developmental stage alter the response of Lolium perenne to elevated CO2. New Phytol, 2001, 150: 347–358
[7]Liao Y(廖轶), Chen G-Y(陈根云), Zhang D-Y(张道允), Xiao Y-Z(肖元珍), Zhu J-G,(朱建国), Xu D-Q(许大全). Non-stomatal acclimation of leaf photosynthesis to free-Air CO2 enrichment (FACE) in winter wheat. J Palnt Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(6): 479–486 (in Chinese with English abstract)
[8]Li F-S(李伏生), Kang S-Z(康绍忠), Zhang F-C(张富仓). Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(3): 387–393 (in Chinese with English abstract)
[9]Bloom A J, Smart D R, Nguyen D T, Searles P S. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA, 2002, 99: 1730–1735
[10]Wallsgrove R M, Keys A J, Lea P J, Miflin B J. Photosynthesis photorespiration and nitrogen metabolism. Plant Cell Environ, 1983, 6: 301–309
[11]Hiromi N, Amane M, Tadahiko M. The effect of elevated partia1 pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol, 1997, 115: 191–198
[12]Chen G-P(陈改苹), Zhu J-G(朱建国), Pang J(庞静), Cheng L(程磊), Xie Z-B(谢祖彬), Zeng Q(曾青). Effects of free-air carbon dioxide enrichment (FACE) on some traits and C/N ratio of rice root at the heading stage. Chin J Rice Sci (中国水稻科学), 2006, 20(1): 53–57 (in Chinese with English abstract)
[13]Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H. Elevated CO2 affects N-metabolism of young poplar plants (Populus tremula × P. alba) differently at deficient and sufficient N-supply. New Phytol, 2003, 157: 65–81
[14]Reich P B, Hobbie S E, Lee T, Ellsworth D S, West J B, Tilman D, Knops J M H, Naeem S, Trost J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006, 440: 708–922
[15]Sawada S, Kuninaka M, Watanabe K. The mechanism to suppress photosynthesis through end product inhibition in single rooted soybean leaves during acclimation to CO2 enrichment. Plant Cell Environ, 2001, 42: 1093–1102
[16]Teng N J, Wang J, Chen T, Wu X Q, Wang Y H, Lin J X. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol, 2006, 172: 92–103
[17]Maroco J P, Breia E, Faria T, Pereira S, Chaves M M. Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant Cell Environ, 2002, 25: 105–113
[18]Yusuke O, Tadaki H and Kouki H. Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecol Res, 2007, 22: 475–484
[19]Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves. Plant Physiol, 1992, 86: 180–187
[20]Epron D, Godard D, Cornic G, Genty B. Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill). Plant Cell Environ, 1995, 18: 43–51
[21]Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78–90
[22]Di Marco, Iannell M A, loreto F. Relationship between photosynthetic and photorespiration in field-grown wheat leaves. Photosynthetica, 1994, 30: 45–51
[23]Demmig-Adams B, Adams III W W, Barker D H, Logan B A, Verhoeven A S, Bowling D R. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Plant Physiol, 1996, 98: 253–264
[24]Luo Y Q, Su B, Currie W S, Dukes J S, Finzi A, Hartwig U, Hungate B, McMurtrie R E, Oren R, Parton W J, Pataki D E, Shaw M R, Zak D R, Field C B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 2004, 54: 731–739
[25]Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising
[CO2]: mechanisms and environmental interactions. Plant Cell Environ, 2007, 30: 258–270
[26]Shangguan Z P, Shao M A, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol, 2000, 156: 46–51
[27]Ines C, Terezinha F F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci, 2004, 166: 1379–1385
[28]Liberloo M, Tulva I, Raïm O, Kull O, Ceulemans R. Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytol, 2007, 173: 537–549
[29]Xu K(徐凯), Guo Y-P(郭延平), Zhang S-L(张上隆), Dai W-S(戴文圣), Fu Q-G(符庆功). Photosynthetic acclimation to elevated CO2 in strawberry leaves grown at different levels of nitrogen nutrition. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(4): 473–480 (in Chinese with English abstract)
[30]Li H-D(李海东), Gao H-Y(高辉远). Effects of different nitrogen application rate on allocation of photosynthetic electron flux in Rumex K-1 leaves. J Palnt Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(5): 417–424 (in Chinese with English abstract)
[31]Rogers A, Gibon Y, Stitt M, Morgan P B, Bernacchi C J, Ort D R, Long S P. Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ, 2006, 29: 1651–1658
[32]Long S P, Ainsworth E A, Rogers A, Ort D R. Rising atmospheric carbon dioxide: plants FACE the future. Ann Rev Plant Biol, 2004, 55: 591–628
[33]Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol, 1983, 72: 297–302
[34]Feng Y L, Fu G L, Zheng Y L. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 2008, 228: 383–390
[35]Yun F(云菲), Liu G-S(刘国顺), Shi H-Z(史宏志), Song J(宋晶). Effects of light and nitrogen interaction on photosynthesis and chlorophyll fluorescence characteristics in flue-cured tobacco. Sci Agric Sin (中国农业科学), 2010, 43(5): 932–941 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!