欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1128-1135.doi: 10.3724/SP.J.1006.2019.84117

• 研究简报 • 上一篇    

甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响

严青青,张巨松(),代健敏,窦巧巧   

  1. 新疆农业大学农学院 / 教育部棉花工程研究中心, 新疆乌鲁木齐 830052
  • 收稿日期:2018-08-26 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-26
  • 通讯作者: 张巨松
  • 作者简介:E-mail: 1359055572@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0101605-05);新疆研究生科研创新项目(XJGRI2017070)

Effects of glycinebetain on photosynthesis and biomass accumulation of island cotton seedlings under saline alkali stress

YAN Qing-Qing,ZHANG Ju-Song(),DAI Jian-Min,DOU Qiao-Qiao   

  1. Agriculture College, Xinjiang Agricultural University / Research Center of Cotton Engineering, Urumqi 830052, Xinjiang, China
  • Received:2018-08-26 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-26
  • Contact: Ju-Song ZHANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0101605-05);Xinjiang Graduate Research and Innovation Project(XJGRI2017070)

摘要:

研究盐碱胁迫下甜菜碱对海岛棉幼苗光合作用和生物量积累的影响, 及在生长发育中的作用, 为其在海岛棉抗盐碱栽培生产中的应用提供参考。本研究采用三因素随机区组试验设计, 以新海35号和新海48号为试材, 盐碱浓度为0、120、180、240 mmol L -1, 甜菜碱浓度为0、30、60 mmol L -1。随着盐碱浓度升高, 2种海岛棉幼苗株高、叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)、植株鲜重及干重积累均呈显著下降趋势, 喷施甜菜碱后海岛棉幼苗生长发育、光合特性及生物量积累均有不同程度的提高; 同一盐碱浓度下, 随着甜菜碱浓度升高, 海岛棉幼苗各项指标均先升高后降低, 且30 mmol L -1>60 mmol L -1>0 mmol L -1, 30 mmol L -1与60 mmol L -1甜菜碱浓度之间无显著差异; 同一甜菜碱浓度下, 随着盐碱浓度的升高, 对海岛棉幼苗各项指标的促进作用均表现为持续下降趋势, 在盐碱浓度120 mmol L -1下, 喷施30 mmol L -1甜菜碱对提高海岛棉光合气体参数具有显著效果, 进而提高了海岛棉幼苗株高及增加了生物量积累; 新海35号较新海48号的促进作用更为明显。因此, 在盐碱地(0~120 mmol L -1)栽培中, 叶面喷施甜菜碱(30 mmol L -1)对海岛棉生长发育及光合作用具有显著改善作用。

关键词: 海岛棉, 盐碱胁迫, 甜菜碱, 光合特性, 生物量

Abstract:

Xinhai 35 and Xinhai 48 varieties were used to study the effects of glycinebetain on photosynthesis, biomass accumulation and the role in the growth and development of sea island cotton seedlings under salt alkali stress, which will provide a reference for the application of glycinebetain in the salt alkali cultivation of island cotton. The concentration of saline alkali was 0, 120, 180, 240 mmol L -1, and the concentration of glycinebetain was 0, 30, 60 mmol L -1. With the increase of saline alkali concentration, island cotton seedling plant height, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), plant fresh and dry weight accumulation showed a significant downward trend, but after glycinebetain spraying, the growth, photosynthesis and biomass accumulation of sea island cotton seedlings were improved in different degrees. Under the same saline alkali concentration, the above indices of island cotton seedlings increased first and then decreased with the increase of glycinebetain concentration. Under the same glycinebetain concentration, the promotion degree of each index of island cotton seedlings showed a continuous downward trend with the increase of salinity and alkali concentration. Under 120 mmol L -1 saline-alkali concentration, spraying 30 mmol L -1 glycinebetain had a significant effect on improving the photosynthetic performance, thereby increasing the plant height and biomass accumulation of island cotton seedlings, which was more effective in Xinhai 35 than in Xinhai 48. Therefore, in the cultivation of saline alkali soil (0-120 mmol L -1), foliar application of glycinebetain (30 mmol L -1) can significantly improve the growth and photosynthesis of island cotton.

Key words: island cotton, saline alkali stress, glycinebetain, photosynthesis, biomass accumulation

图1

不同处理对海岛棉幼苗株高的影响 标以不同字母的柱值在P < 0.05水平下差异显著。"

图2

不同处理对海岛棉幼苗光合气体参数的影响 标以不同字母的柱值在P < 0.05水平下差异显著。"

表1

不同处理对海岛棉幼苗植株鲜重积累的影响"

品种
Variety
盐碱浓度
Salt and alkali concentration (mmol L-1)
甜菜碱浓度
Betaine concentration
(mmol L-1)
茎叶鲜重
Stem and leaf fresh weight (mg)
根鲜重
Root fresh weight
(mg)
总鲜重
Total fresh weight
(mg)
新海35号 0 0 7.89±0.17 a 1.98±0.12 a 9.87±0.28 a
Xinhai 35 120 0 6.96±0.17 de 1.73±0.01 cd 8.70±0.18 c
30 7.57±0.12 abc 1.86±0.03 ab 9.43±0.14 ab
60 7.38±0.03 bcd 1.82±0.04 bc 9.21±0.06 bc
180 0 5.73±0.24 hi 1.42±0.01 h 7.16±0.24 e
30 6.22±0.18 fg 1.52±0.01 fgh 7.74±0.20 d
60 6.01±0.19 gh 1.47±0.05 gh 7.48±0.22 de
240 0 3.44±0.22 k 1.10±0.05 i 4.54±0.27 g
30 3.65±0.19 k 1.18±0.03 i 4.83±0.16 g
60 3.49±0.02 k 1.12±0.01 i 4.61±0.01 g
品种
Variety
盐碱浓度
Salt and alkali concentration (mmol L-1)
甜菜碱浓度
Betaine concentration
(mmol L-1)
茎叶鲜重
Stem and leaf fresh weight (mg)
根鲜重
Root fresh weight
(mg)
总鲜重
Total fresh weight
(mg)
新海48号 0 0 7.75±0.14 ab 1.67±0.06 de 9.42±0.20 ab
Xinhai 48 120 0 6.54±0.10 ef 1.45±0.06 gh 7.99±0.07 d
30 7.35±0.08 bcd 1.64±0.02 def 8.99±0.06 bc
60 7.11±0.18 cd 1.57±0.05 efg 8.68±0.21 c
180 0 5.10±0.19 j 1.04±0.01 i 6.14±0.19 f
30 5.50±0.07 ij 1.12±0.03 i 6.62±0.07 f
60 5.24±0.10 j 1.06±0.02 i 6.30±0.10 f
240 0 2.59±0.18 l 0.59±0.01 j 3.19±0.18 h
30 2.63±0.17 l 0.62±0.02 j 3.24±0.18 h
60 2.46±0.20 l 0.52±0.06 j 2.98±0.24 h

表2

不同处理对海岛棉干物质积累的影响"

品种
Variety
盐碱浓度
Salt and alkali concentration (mmol L-1)
甜菜碱浓度
Betaine concentration (mmol L-1)
茎叶干重
Stem and leaf dry weight (mg)
根干重
Root dry weight
(mg)
总干重
Total dry weight
(mg)
新海35号 0 0 0.97±0.01 a 0.19±0.01 a 1.16±0.02 a
Xinhai 35 120 0 0.74±0.03 d 0.14±0.00 cde 0.88±0.03 e
30 0.88±0.01 b 0.17±0.01 b 1.05±0.01 b
60 0.83±0.01 bc 0.15±0.00 cd 0.98±0.01 c
180 0 0.54±0.01 g 0.11±0.00 f 0.66±0.01 h
30 0.68±0.01 e 0.13±0.00 de 0.81±0.01 f
60 0.61±0.01 f 0.12±0.01 ef 0.74±0.01 g
240 0 0.33±0.04 i 0.08±0.01 gh 0.41±0.04 k
30 0.41±0.01 h 0.09±0.00 g 0.51±0.01 i
60 0.37±0.01 hi 0.06±0.00 i 0.43±0.01 jk
新海48号 0 0 0.86±0.01 b 0.15±0.00 c 1.01±0.01 bc
Xinhai 48 120 0 0.79±0.02 c 0.12±0.00 ef 0.92±0.02 de
30 0.85±0.04 b 0.14±0.00 cde 0.99±0.04 c
60 0.84±0.02 bc 0.13±0.01 de 0.97±0.01 cd
180 0 0.39±0.02 h 0.08±0.00 gh 0.46±0.02 ijk
30 0.43±0.00 h 0.09±0.00 g 0.52±0.00 i
60 0.42±0.00 h 0.07±0.00 hi 0.49±0.00 ij
240 0 0.15±0.00 j 0.02±0.00 jk 0.17±0.00 l
30 0.19±0.01 j 0.03±0.00 j 0.21±0.01 l
60 0.15±0.01 j 0.01±0.00 k 0.16±0.01 l
[1] 徐恒刚 . 中国盐生植被及盐渍化生态治理. 北京: 中国农业科学技术出版社, 2004.
Xu H G. Halophyte and Ecological Management of Salinization in China. Beijing: China Agricultural Science Technology Publisher, 2004 (in Chinese).
[2] 李建国, 濮励杰, 朱明, 张润森 . 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012,67:1233-1245.
Li J G, Pu L J, Zhu M, Zhang R S . The present situation and hot issues in the salt-affected soil research. Acta Geogr Sin, 2012,67:1233-1245 (in Chinese with English abstract).
[3] 任丽丽, 任春明, 赵自国 . 植物耐盐性研究进展. 山西农业科学, 2010,38(5):87-90.
Ren L L, Ren C M, Zhao Z G . Research advances in plant salt-tolerance. J Shanxi Agric Sci, 2010,38(5):87-90 (in Chinese with English abstract).
[4] Singh M, Kumar J, Singh S, Singh V P . Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol, 2015,14:407-426.
doi: 10.1007/s11157-015-9372-8
[5] 周洪华, 李卫红 . 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 2015,39:81-91.
Zhou H H, Li W H . Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chin J Plant Ecol, 2015,39:81-91 (in Chinese with English abstract).
[6] 岳健敏, 任琼, 张金池 . 植物盐耐机理研究进展. 林业工程学报, 2015,29(5):9-13.
Yue J M, Ren Q, Zhang J C . Advances in salt tolerance mechanism of plants. J For Eng, 2015,29(5):9-13 (in Chinese with English abstract).
[7] Chen T H, Murata N . Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011,34:1-20.
doi: 10.1111/pce.2011.34.issue-1
[8] 王素平, 郭世荣, 李璟, 胡晓辉, 焦彦生 . 盐胁迫对黄瓜幼苗根系生长和水分利用的影响. 应用生态学报, 2006,17:1883-1888.
Wang S P, Guo S R, Li J, Hu X H, Jiao Y S . Effects of salt stress on the growth of root system and water use efficiency of cucumber seedlings. Chin J Appl Ecol, 2006,17:1883-1888 (in Chinese with English abstract).
[9] Rahnama A, James R A, Poustini K, Munns R . Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol, 2010,37:255-263.
doi: 10.1071/FP09148
[10] 王玉萍, 高会会, 刘悦善, 慕平, 鱼小军, 安黎哲, 张峰 . 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 2013,24:2049-2055.
Wang Y P, Gao H H, Liu Y S, Mu P, Yu X J, An L Z, Zhang F . Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: a review. Chin J Appl Ecol, 2013,24:2049-2055 (in Chinese with English abstract).
[11] 丁俊祥, 邹杰, 唐立松, 刘卫国 . 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性. 生态学报, 2015,35:733-741.
Ding J X, Zou J, Tang L S, Liu W G . Photosynthetic characteristics of three different life-form plants in the desert-Oasisecotone of Keriya river basin. Acta Ecol Sin, 2015,35:733-741 (in Chinese with English abstract).
[12] 王宇超, 王得祥 . 盐胁迫对木本滨藜叶绿素合成及净光合速率的影响. 农业工程学报, 2012,28(10):151-158.
Wang Y C, Wang D X . Effects of salt stress on chlorophyll content and net photosynthetic rate of woody saltbush. Trans CSAE, 2012,28(10):151-158 (in Chinese with English abstract).
[13] 马荣, 王成, 马庆, 侯佩臣, 王晓冬 . 向日葵芽苗期离子对复合盐胁迫的响应. 中国生态农业学报, 2017,25:720-729.
Ma R, Wang C, Ma Q, Hou P C, Wang X D . Ion response of sunflower at sprouting stage to mixed salt stress. Chin J Eco-Agric, 2017,25:720-729 (in Chinese with English abstract).
[14] 张会慧, 张秀丽, 李鑫, 丁俊男, 朱文旭, 齐飞, 张婷, 田野, 孙广玉 . NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响. 应用生态学报, 2012,23:625-631.
Zhang H H, Zhang X L, Li X, Ding J N, Zhu W X, Qi F, Zhang T, Tian Y, Sun G Y . Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings. Chin J Appl Ecol, 2012,23:625-631 (in Chinese with English abstract).
[15] 许大全 . 光合作用气孔限制分析中的一些问题. 植物生理学报, 1997,33:241-244.
Xu D Q . Some problems in stomatal limitation analysis of photosynthesis. J Plant Physiol, 1997,33:241-244 (in Chinese with English abstract).
[16] Nusrat N, Shahbaz M, Perveen S . Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress. Acta Physiol Planta, 2014,36:2985-2998.
[17] 雷永康, 徐智敏, 李取生, 何宝燕, 梅秀芹, 陈艳芳, 曹刚 . 外源甜菜碱对苋菜抗盐性与累积重金属特性的影响. 环境科学学报, 2015,35:1587-1595.
Lei Y K, Xu Z M, Li Q S, He B Y, Mei X Q, Chen Y F, Cao G . Effect of exogenous glycinebetaine on the salinity tolerance and heavy metals accumulation of edible amaranth. Acta Sci Circumst, 2015,35:1587-1595 (in Chinese with English abstract).
[18] 刘佳琪, 杨雪, 李迪, 杨海灵 . 胡杨甜菜碱醛脱氢酶基因的功能分化. 生物工程学报, 2012,28:329-339.
Liu J Q, Yang X, Li D, Yang H L . Functional divergence of betaine aldehyde dehydrogenase genes in Populus euphratica. Chin J Biotechnol, 2012,28:329-339 (in Chinese with English abstract).
[19] 高雁, 娄恺, 李春 . 盐分胁迫下棉花幼苗对外源甜菜碱的生理响应. 农业工程学报, 2011,27(增刊1):244-248.
Gao Y, Lou K, Li C . Effect of exogenous glycine betaine on the physiological responses of cotton seedlings under salt stress. Trans CSAE, 2011,27(suppl-1):244-248 (in Chinese with English abstract).
[20] 黄英运, 朱丹华, 李虹章, 董德坤 . 外源甜菜碱对NaCl胁迫下大豆苗期生理指标的影响. 浙江农业学报, 2012,24:12-16.
Huang Y Y, Zhu D H, Li H Z, Dong D K . Effects of exogenous glycine betaine on the physiological indexes of soybean seedlings under NaCl stress. Acta Agric Zhejiangensis, 2012,24:12-16 (in Chinese with English abstract).
[21] 赵新西, 马千全, 梁超, 房燕, 王玮 . 甜菜碱预处理对盐胁迫下小麦幼苗类囊体膜脂脂肪酸组分和功能的影响. 作物学报, 2006,32:703-708.
Zhao X X, Ma Q Q, Liang C, Fang Y, Wang W . Effects of pretreated with glycinebetaine on the fatty acid composition and function of wheat thylakoid membrane under salt stress. Acta Agron Sin, 2006,32:703-708 (in Chinese with English abstract).
[22] Wei D, Zhang W, Wang C C, Meng Q W, Li G, Tony H H, Yang X H . Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci, 2017,257:74-83.
doi: 10.1016/j.plantsci.2017.01.012
[23] Khalid A, Athar H U R, Zafar Z U, Akram A, Hussain K, Manzoor H, Al-Qurainy F, Ashraf M . Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under salt stress. J Appl Bot Food Qual, 2015,88:78-86.
[24] Cengiz K, Osman S, Salih A, Murat D . Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric For, 2013,37:188-194.
[25] Suriyan C U, Chalermpol K . Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For, 2010,34:517-527.
[26] 严青青, 张巨松, 李星星, 王燕提 . 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响. 作物学报, 2019,45:99-109.
Yan Q Q, Zhang J S, Li X X, Wang Y T . Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin, 2019,45:99-109 (in Chinese with English abstract).
[27] 尹海龙, 田长彦 . 根施甜菜碱对盐胁迫下玉米幼苗根系生长与光合特性的影响. 干旱区资源与环境, 2013,27(9):113-118.
Yin H L, Tian C Y . Effects of root-applied glycinebetaine on the root growth and photosynthetic characteristics under salt stress in maize seedlings. J Arid Land Resour Environ, 2013,27(9):113-118 (in Chinese with English abstract).
[28] 张浩, 郭丽丽, 叶嘉, 张雷, 王清涛, 李菲, 张茜茜, 曹旭, 徐明, 郝立华, 郑云普 . 樱桃番茄叶片气孔特征和气体交换过程对NaCl胁迫的响应. 农业工程学报, 2018,34(5):107-113.
Zhang H, Guo L L, Ye J, Zhang L, Wang Q T, Li F, Zhang Q Q, Cao X, Xu M, Hao L H, Zheng Y P . Responses of leaf stomatal traits and gas exchange process of cherry tomato to NaCl salinity stress. Trans CSAE, 2018,34(5):107-113 (in Chinese with English abstract).
[29] Athar H U R, Zafar Z U, Ashraf M . Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci, 2015,201:428-442.
doi: 10.1111/jac.2015.201.issue-6
[30] 梁杨杨, 吴晓蕾, 李敬蕊, 宫彬彬, 高洪波, 王春燕 . 盐碱胁迫下GABA对番茄幼苗活性氧代谢及光合性能的影响. 河北农业大学学报, 2016,39(3):7-13.
Liang Y Y, Wu X L, Li J R, Gong B B, Gao H B, Wang C Y . Effects of exogenous GABA on reactive oxygen species metabolism and photosynthesis characteristics of tomatoes under mixed NaCl and NaHCO3 stress. J Agric Univ Hebei, 2016,39(3):7-13 (in Chinese with English abstract).
[31] 李善家, 韩多红, 王恩军, 武燕 . 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响. 草业科学, 2016,33:674-680.
Li S J, Han D H, Wang E J, Wu Y . Effects of exogenous betaine on seed germination and antioxidase activities of lycium ruthenium seedlings under NaCl stress. Pratac Sci, 2016,33:674-680 (in Chinese with English abstract).
[32] Rhodes D . Salt tolerance of glyciebetaine-deficient and -containing maize lines. Plant Physiol, 1995,107:631-638.
doi: 10.1104/pp.107.2.631
[33] Goel D, Singh A K, Yadav V, Babbar S B, Murata N, Bansal K C . Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol, 2011,168:1286-1294.
[34] Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T . Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol, 1998,39:425-432.
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[5] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[6] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[7] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[8] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[9] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[10] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[11] 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306.
[12] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[13] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[14] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[15] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!