欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1016-1024.doi: 10.3724/SP.J.1006.2020.93054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析

任蒙蒙1,**,张红伟1,**,王建华2,王国英1,郑军1,*()   

  1. 1 中国农业科学院作物科学研究所, 北京100081
    2 中国农业大学农学院, 北京100193
  • 收稿日期:2019-10-12 接受日期:2020-04-15 出版日期:2020-07-12 网络出版日期:2020-04-26
  • 通讯作者: 郑军
  • 作者简介:任蒙蒙, E-mail: ren_mm1991@163.com|张红伟, E-mail: zhanghongwei@caas.cn
    ** 同等贡献
  • 基金资助:
    国家重点研发计划项目(2016YFD0101002);中国农业科学院创新工程专项

Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes

REN Meng-Meng1,**,ZHANG Hong-Wei1,**,WANG Jian-Hua2,WANG Guo-Ying1,ZHENG Jun1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2019-10-12 Accepted:2020-04-15 Published:2020-07-12 Published online:2020-04-26
  • Contact: Jun ZHENG
  • About author:** Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101002);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

摘要:

干旱是影响玉米(Zea mays L.)产量最主要的环境因素之一, 具有耐深播特性的玉米种质材料能够吸收土壤深层水分, 具有较强的耐旱性, 因此研究玉米耐深播性状的遗传机制具有重要的理论和应用价值。本实验室前期已利用耐深播玉米自交系3681-4与普通自交系X178构建的F2:3群体, 在玉米10号染色体上定位到了一个耐深播主效QTL qMES20-10。本研究在此基础上, 以X178为轮回亲本, 结合前景选择和背景选择, 构建了BC3F3:4家系, 对qMES20-10进行了确证; 并进一步利用分子标记辅助选择构建了高代回交群体, 将其精细定位于133.3~136.0 Mb的区间之内。同时, 利用从BC3F3:4家系中筛选出的两个近等基因系, 进行差异表达基因分析, 发现差异表达基因主要参与了化学性应激反应、氧化还原反应和对氧化胁迫的应激反应。本研究结果为进一步克隆耐深播主效QTL qMES20-10奠定了基础。

关键词: 玉米, 耐深播, QTL, 精细定位, 差异表达基因

Abstract:

Drought stress is a major threat to maize (Zea mays L.) yield. Deep-seeding tolerant maize variety can absorb water in deep soil and thus have strong drought tolerance. Therefore, it is of great theoretical and practical importance to study the genetic mechanism of deep-seeding tolerance. In our previous work, we identified a major QTL qMES20-10 controlling maize deep-seeding tolerance on chromosome 10 using an F2:3 population derived from a deep-seeding tolerant inbred line 3681-4 and a common inbred line X178. In this study, a BC3F3:4 population was constructed through background and foreground selection using X178 as the recurrent parent. The major QTL, qMES20-10, was firstly verified in this BC3F3:4 population. Furthermore, advanced backcross population was constructed through marker-assisted selection, and qMES20-10 was fine-mapped within the interval of 133.3-136.0 Mb on chromosome 10. Moreover, RNA-Seq analysis of two near-isogenic lines screened from the BC3F3:4 families identified the differentially expressed genes, mainly involved in chemical stimulus response, oxidation reduction, and oxidative stress response. These results lay a foundation of further cloning the major QTL qMES20-10.

Key words: maize, deep-seeding tolerance, QTL, fine mapping, differentially expressed genes

图1

表型鉴定方法和亲本材料表型 A: 表型鉴定方法示意图。B: 20 cm播深条件下亲本材料的中胚轴, 标尺=1 cm。C: 亲本材料的中胚轴长度; **表示0.01水平下差异显著。"

表1

本研究所用的引物"

引物
Primer
物理位置
Position
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
umc1506 133,239,898 ATAAAGGTTGGCAAAACGTAGCCT AAAAGAAACATGTTCAGTCGAGCG
DST_InD25 133,799,178 TGCGCTTTATTAGGCGAAAC TTTACGCGTTATGGGAGACC
DST_Ind7 134,830,243 GCTTGCTGCATTGTCTTGAA GGCAGATTGACACTGGTGAA
DST_Ind105 136,072,789 AGAGAGACAGCCGCACTTG TCGACCGTACTTGTTCATGG
DST_InD13 136,274,298 GGCAACAGTTCGACGGATTA TCCGGATGATGTTTACATGG
bnlg1028 138,503,281 AGGAAACGAACACAGCAGCT TGCATAGACAAAACCGACGT

图2

耐深播主效QTL qMES20-10确证 A: BC3F3:4家系中3种基因型材料的中胚轴长度。A、H、B分别表示X178纯合、杂合、3681-4纯合3种基因型。P值是对3种基因型材料的中胚轴长度作方差分析得到。B: BC3F3:4家系全基因组QTL检测。"

图3

耐深播主效位点qMES20-10的精细定位 A: 目标QTL qMES20-10所在的染色体区段。B: 用BC4F2:3家系进行精细定位。R1~R9表示9种不同的重组类型, 黑色和白色区段分别代表来自亲本3681-4和X178的染色体片段。** 和 * 分别表示在0.01和0.05水平下差异显著, NS表示无显著差异。"

图4

后代测验验证定位区间 A: 交换单株的交换位置。B: 对交换单株的后代进行基因型和表型分析。图中黑色、白色和灰色区段分别代表来自3681-4、X178和杂合的染色体片段。n代表不同基因型单株的个数, P值是不同基因型单株的中胚轴长度做t测验得到。"

图5

差异基因统计和分布图 A: 两组差异表达基因的韦恩图。B: 两组差异表达基因在染色体上的分布图, 大圆和小圆分别表示两亲本和近等基因系中的差异表达基因。P-value通过对两组基因的表达量做t测验获得, 红色的点表示P-value小于0.0001的基因。"

图6

近等基因系中差异基因GO分析 A: 灰色方框表示能富集到的通路。B: KEGG网站中植物激素信号转导途径富集到的差异表达基因。"

[1] Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M, Hammer G L. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 2014,344:516-519.
doi: 10.1126/science.1251423 pmid: 24786079
[2] Molatudi R L, Mariga I K. The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009,5:2234-2237.
[3] Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptile improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil, 2005,272:87-100.
doi: 10.1007/s11104-004-4040-8
[4] Zhou L, Wang J K, Yi Q, Wang Y Z, Zhu Y G, Zhang Z H. Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res, 2007,100:294-301.
doi: 10.1016/j.fcr.2006.08.003
[5] Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum L.) is associated with longer coleoptile, greater seedling vigor and final plant height. Theor Appl Genet, 2007,115:59-66.
doi: 10.1007/s00122-007-0540-2
[6] Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vicror using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res, 2005,91:161-170.
doi: 10.1016/j.fcr.2004.06.004
[7] Alibu S, Saito Y, Shiwachi H, Irie K. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (Oryza sativa L.) and seedling emergence in deep sowing. Afr J Agric Res, 2012,7:6239-6248.
doi: 10.5897/AJAR
[8] van Ast A, van Delft G J, Graves J D, Fitter A H. Striga seed avoidance by deep planting and no-tillage in sorghum and maize. Int J Pest Manage, 2000,46:251-256.
doi: 10.1080/09670870050206019
[9] Troyer A F. The location of genes governing long first internode of corn. Genetics, 1997,145:1149-1154.
pmid: 9093865
[10] Dungan G H. Response of corn to extremely deep planting. Agron J, 1950,42:256-257.
doi: 10.2134/agronj1950.00021962004200050010x
[11] Flint L H. Light and the elongation of the mesocotyl in corn. Plant Physiol, 1944,19:537-543.
doi: 10.1104/pp.19.3.537 pmid: 16653935
[12] Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptile length improves stand establishment, vigor and grain yield of deep-sown wheat. Field Crops Res, 2007,100:10-23.
doi: 10.1016/j.fcr.2006.05.001
[13] Lu Q, Zhang M C, Niu X J, Wang C H, Xu Q, Feng Y, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping. Planta, 2016,243:645-657.
doi: 10.1007/s00425-015-2434-x pmid: 26612069
[14] Wu J L, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol, 2016,15:218.
doi: 10.1186/s12870-015-0608-0 pmid: 26362270
[15] Zhao Y, Zhao W P, Jiang C H, Wang X L, Xiong H Y, Elana G T, Yin Z G, Chen Y F, Wang X, Xie J Y, Pan Y H, Rashid M R, Zhang H L Li J X, Li Z C. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Front Plant Sci, 2018,9:332.
doi: 10.3389/fpls.2018.00332 pmid: 29616055
[16] 赵光武, 马攀, 王建华, 王国英. 不同玉米自交系耐深播能力鉴定及对深播胁迫的生理响应. 玉米科学, 2009,17(5):9-13.
Zhao G W, Ma P, Wang J H, Wang G Y. Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. J Maize Sci, 2009,17(5):9-13 (in Chinese with English abstract).
[17] Liu H J, Zhang L, Wang J C, Li C S, Zeng X, Xie S P, Zhang Y Z, Liu S S, Hu S L, Wang J H, Lee M, Lübberstedt T, Zhao G W. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front Plant Sci, 2017,8:813.
doi: 10.3389/fpls.2017.00813 pmid: 28588594
[18] Henry A, Swamy B P, Dixit S, Torres R D, Batoto T C, Manalili M, Anantha M S, Mandal N P, Kumar A. Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. J Exp Bot, 2015,66:1787-1799.
doi: 10.1093/jxb/eru506 pmid: 25680791
[19] 饶志明, 董海涛, 庄杰云, 柴荣耀, 樊叶杨, 李德葆, 郑康乐. 水稻抗稻瘟病近等基因系的cDNA微阵列分析. 遗传学报, 2002,29:887-893.
Rao Z M, Dong H T, Zhuang Z J, Chai R Y, Fan Y Y, Li D B, Zheng K L. Analysis of gene expression profiles during host-Magnaporthe grisea interactions in a pair of near isogenetic lines of rice. Acta Genet Sin, 2002,29:887-893 (in Chinese with English abstract).
[20] Zhao G, Fu J, Wang G, Ma P, Wu L, Wang J H. Gibberellin- induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Plant Breed, 2010,129:87-91.
doi: 10.1111/pbr.2010.129.issue-1
[21] Zhang H W, Ma P, Zhao Z N, Zhao G W, Tian B H, Wang J H, Wang G Y. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet, 2012,124:223-232.
doi: 10.1007/s00122-011-1700-y
[22] Prigge V, Xu X W, Li L, Babu R, Chen S J, Atlin G N, Melchinger A E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012,190:781-793.
doi: 10.1534/genetics.111.133066
[23] Chen D H, Ronald P C. A rapid DNA min preparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999,17:53-57.
doi: 10.1023/A:1007585532036
[24] Settles A M, Bagadion A M, Bai F, Zhang J, Barron B, Leach K, Mudunkothge J S, Hoffner C, Bihmidine S, Finefield E, Hibbard J, Dieter E, Malidelis I A, Gustin J L, Karoblyte V, Tseung C W, Braun D M. Efficient molecular marker design using the MaizeGDB Mo17 SNPs and Indels track. G3: Genes Genom Genet, 2014,4:1143-1145.
doi: 10.1534/g3.114.010454 pmid: 24747759
[25] Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260.
doi: 10.1007/s00122-007-0663-5
[26] Revele W. Procedures for Personality and Psychological Research. Evanston, IL, USA: Northwestern University, 2015.
[27] Rio D C, Ares M, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc, 2010,6:0-0.
[28] Yang Q, Zhang D F, Xu M L. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol, 2012,54:228-237.
doi: 10.1111/j.1744-7909.2012.01108.x
[29] Von Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006,112:1221-1231.
doi: 10.1007/s00122-006-0223-4
[30] Ghosh S, Chan C K. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol, 2016,1374:339-361.
doi: 10.1007/978-1-4939-3167-5_18 pmid: 26519415
[31] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[32] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010,11:R106.
doi: 10.1186/gb-2010-11-10-r106 pmid: 20979621
[33] Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2017,45:W122-W129.
doi: 10.1093/nar/gkx382 pmid: 28472432
[34] Habib A, Powell J J, Stiller J, Liu M, Shabala S, Zhou M X, Gardiner D M, Liu C J. A multiple near isogenic line (multi-NIL) RNA-Seq approach to identify candidate genes underpinning QTL. Theor Appl Genet, 2018,131:613-624.
doi: 10.1007/s00122-017-3023-0 pmid: 29170790
[35] Glagoleva A Y, Shmakov N A, Shoeva O Y, Vasiliev G V, Shatskaya N V, Börner A, Afonnikov D A, Khlestkina E K. Metabolic pathways and genes identified by RNA-Seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biol, 2017,17:182.
doi: 10.1186/s12870-017-1124-1 pmid: 29143606
[36] Smets R, Le J, Prinsen E, Verbelen J P, Van Onckelen H A. Cytokinin-induced hypocotyl elongation in light-grownArabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta, 2005,221:39-47.
doi: 10.1007/s00425-004-1421-4 pmid: 15843964
[37] Hayashi Y, Takahashi K, Inoue S, Kinoshita T. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiol, 2014,55:845-853.
doi: 10.1093/pcp/pcu028 pmid: 24492258
[38] Luo Q, Lian H L, He S B, Li L, Jia K P, Yang H Q. COP1 and PhyB physically interact with PIF1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell, 2014,26:2441-2456.
doi: 10.1105/tpc.113.121657 pmid: 24951480
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[11] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!