欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1087-1098.doi: 10.3724/SP.J.1006.2020.92062

• 耕作栽培·生理生化 • 上一篇    下一篇

灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响

韩展誉1,管弦悦1,赵倩1,吴春艳2,黄福灯2,潘刚1,程方民1,*()   

  1. 1 浙江大学农业与生物技术学院, 浙江杭州 310058
    2 浙江省农业科学院, 浙江杭州310021
  • 收稿日期:2019-11-28 接受日期:2020-03-24 出版日期:2020-07-12 网络出版日期:2020-04-10
  • 通讯作者: 程方民
  • 作者简介:E-mail: 21716125@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(31871566);国家重点研发计划项目(2016YFD0300502);国家重点研发计划项目(2017YFD0300103)

Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains

HAN Zhan-Yu1,GUAN Xian-Yue1,ZHAO Qian1,WU Chun-Yan2,HUANG Fu-Deng2,PAN Gang1,CHENG Fang-Min1,*()   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2019-11-28 Accepted:2020-03-24 Published:2020-07-12 Published online:2020-04-10
  • Contact: Fang-Min CHENG
  • Supported by:
    National Natural Science Foundation of China(31871566);National Key Research and Development Program of China(2016YFD0300502);National Key Research and Development Program of China(2017YFD0300103)

摘要:

灌浆结实期温度与氮肥施用量是影响稻米品质的两个重要生态因子, 尤其是与稻米蛋白含量及米饭食味关系密切。本文以多个水稻主栽品种为材料, 通过灌浆结实期的人工控温试验、大田长期定位点的施氮处理试验和盆栽条件下的温氮两因素复合处理试验, 探讨了水稻灌浆结实期温度对稻米贮藏蛋白含量与组分影响及其有别于氮肥处理效应的差异规律, 并分析了温度与氮肥两个因素对稻米贮藏蛋白及其组分影响的交互作用特点。结果表明, 高温胁迫和增施氮肥均引起水稻籽粒总蛋白及其谷蛋白组分含量(%)的显著增加, 但两者对稻米醇溶蛋白影响却存在明显差别。其中, 高温处理引起醇溶蛋白含量显著下降, 提高稻米谷蛋白/醇溶蛋白比值, 而增施氮肥引起稻米谷蛋白和醇溶蛋白含量明显增加, 但对谷蛋白/醇溶蛋白比值与贮藏蛋白各亚基的组成比例影响相对较小。在高温处理下, 谷蛋白的57 kD前体亚基组分含量有所提高, 而37 kD酸性亚基和22 kD碱性亚基随温度处理的差异变化却因品种而异, 且高温处理对水稻籽粒蛋白绝对含量(mg grain-1)的影响程度也远没有其对蛋白相对含量(%)的影响明显。高氮×高温处理组合对稻米总蛋白与谷蛋白含量的影响程度显著大于单一高温或高氮处理, 但在高氮水平下由高温引起稻米醇溶蛋白含量的下降幅度却小于其低氮对照, 有利于稻米醇溶蛋白含量在不同温度处理下的相对稳定。

关键词: 水稻, 灌浆温度, 氮肥, 贮藏蛋白, 稻米品质

Abstract:

Air temperature during grain-filling stage and application amount of nitrogen fertilizer are two of most important factors affecting rice grain quality, which largely related to grain protein content and cooking palatability. In this paper, the difference in grain protein content and its composition was investigated using different rice varieties, with different temperature treatments under artificial controlled condition and three nitrogen application levels in a long-term experiment field. Meanwhile, another experiment of two factors (temperature and nitrogen) in pot condition was conducted to clarity the interaction effects of temperature and nitrogen on grain protein content and its components. The higher temperature (HT) and heavier N application (HN) significantly enhanced the total protein content and glutelin accumulation in rice grain. However, HT differed obviously from HN in their impact on grain prolamin. HT significantly decreased grain prolamin concentration and markedly enhanced the ratio of glutelin to prolamin in rice grains, while HN increased in grain glutelin and prolamin contents had smaller effects on ratios of glutelin to prolamin and the proportion of subunit compositions in grain storage proteins. Furthermore, HT had a marked impact on the glutelin composition in rice grains, with the significant increase in 57 kD pro-glutelin amount. However, the effect of HT on 37 kD α-glutelin and 22 kD β-glutelin was greatly variable among different rice varieties. The varying extent of grain protein amount per grain (mg grain-1) affected by HT was much smaller than that of grain protein content (%). The combined effect of HT and HN on the total storage protein and glutelin accumulation in rice grain was much greater than the individual effect of HT and HN. The dropping extent of grain prolamin content under HT appeared to be smaller for HN relative to LN, suggesting that appropriate N application was beneficial to keep the relatively stable content of grain prolamin composition under the fluctuating temperature for rice growth.

Key words: rice (Oryza sativa L.), high temperature, nitrogen, storage protein, grain quality

表1

不同温度处理下水稻籽粒蛋白含量及其组分差异"

品种
Cultivar
处理
Treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
总蛋白
Total
protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
谷/醇比
Glu/Prol
浙恢7954
Zhehui 7954
NT 0.72 b 0.80 b 0.61 a 6.92 b 9.17 b 0.171 b 0.190 a 0.145 a 1.644 b 11.34 b
HT 1.06 a 0.95 a 0.57 b 7.83 a 10.29 a 0.221 a 0.199 a 0.122 b 1.678 a 13.74 a
黄华占
Huanghuazhan
NT 0.95 b 0.93 b 0.72 a 7.93 b 10.46 b 0.214 b 0.209 b 0.162 a 1.785 a 11.01 a
HT 1.15 a 1.02 a 0.65 b 8.21 a 10.83 a 0.253 a 0.225 a 0.143 b 1.810 a 12.63 a
秀水134
Xiushui 134
NT 1.06 a 0.96 a 0.56 a 6.53 b 8.97 b 0.233 a 0.211 a 0.123 a 1.442 b 11.71 b
HT 0.92 b 0.97 a 0.52 b 7.26 a 9.61 a 0.186 b 0.196 b 0.103 b 1.466 a 14.23 a
秀水09
Xiushui 09
NT 1.01 a 1.07 b 0.64 a 6.47 b 9.38 b 0.224 a 0.237 a 0.142 a 1.433 a 10.11 b
HT 0.98 a 1.12 a 0.57 b 7.24 a 10.15 a 0.195 b 0.221 b 0.113 b 1.439 a 12.70 a
9311 NT 0.89 a 0.97 a 0.57 a 7.32 b 10.67 b 0.209 b 0.228 a 0.130 a 1.724 a 12.84 b
HT 0.88 a 1.02 a 0.58 a 8.01 a 11.02 a 0.224 a 0.216 b 0.120 a 1.695 a 13.81 a
甬优2640
Yongyou 2640
NT 0.92 b 1.09 a 0.65 a 7.13 b 9.96 b 0.212 a 0.251 a 0.150 a 1.642 a 10.97 b
HT 0.99 a 1.18 a 0.54 b 7.46 a 10.35 a 0.216 a 0.258 a 0.123 b 1.632 a 13.81 a

图1

不同温度处理下水稻籽粒贮藏蛋白SDS-PAGE及其主要蛋白条带的相对光密度差异 NT和HT分别表示灌浆结实期的常温处理和高温处理; A和B分别表示水稻籽粒贮藏蛋白SDS-PAGE图和主要蛋白条带的相对光密度图; 同一品种中的2个温度处理间相比, 小写字母相同者表示2个温度处理间(NT和HT)的差异未达到统计显著水平(P < 0.05); 垂直棒代表3次生物学重复的标准误差。"

表2

不同施氮水平下水稻籽粒蛋白含量及其组分差异"

品种
Cultivar
处理
Treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白Albumin 球蛋白Globulin 醇溶
蛋白Prolamin
谷蛋白Glutelin 总蛋白Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin 谷/醇比Glu/Prol
浙恢7954
Zhehui7954
LN 0.87 b 0.83 b 0.53 b 6.71 c 8.87 c 0.197 b 0.188 c 0.120 b 1.524 c 12.66 b
MN 0.89 b 1.06 a 0.58 a 7.39 b 10.57 a 0.206 ab 0.246 a 0.137 a 1.714 b 12.53 b
HN 1.03 a 0.97 b 0.61 a 8.06 a 10.81 a 0.228 a 0.215 b 0.135 a 1.786 a 13.21 a
黄华占
Huanghuazhan
LN 0.86 b 0.92 b 0.66 b 7.47 b 9.43 b 0.187 c 0.200 b 0.144 b 1.626 b 11.57 b
MN 1.02 a 1.11 a 0.68 ab 8.08 a 11.06 a 0.226 a 0.245 a 0.151 a 1.790 a 11.93 a
HN 0.98 a 1.06 a 0.71 a 8.12 a 11.18 a 0.211 b 0.228 ab 0.153 a 1.747 a 11.66 b
秀水 134
Xiushui 134
LN 0.87 b 0.91 b 0.56 b 5.75 c 8.57 b 0.184 b 0.192 b 0.110 b 1.320 b 11.16 b
MN 0.91 b 1.07 a 0.63 a 6.91 b 10.24 a 0.189 b 0.222 a 0.131 a 1.538 a 11.76 a
HN 1.12 a 1.08 a 0.66 a 7.17 a 10.53 a 0.223 a 0.215 ab 0.132 a 1.530 a 11.62 a
秀水09
Xiushui 09
LN 0.92 b 0.93 c 0.51 c 6.32 c 9.09 c 0.204 b 0.206 b 0.113 b 1.384 c 12.21 b
MN 0.90 b 1.07 b 0.57 b 7.04 b 9.85 b 0.201 b 0.239 a 0.127 a 1.663 b 13.05 a
HN 1.06 a 1.14 a 0.64 a 7.76 a 10.98 a 0.223 a 0.240 a 0.130 a 1.716 a 13.16 a

图2

不同施氮水平下水稻籽粒贮藏蛋白SDS-PAGE及其主要蛋白条带的相对光密度差异 LN、MN和HN分别表示低氮(0 kg hm-2)、中氮(180 kg hm-2)和高氮(300 kg hm-2)处理水平; A和B分别表示水稻籽粒贮藏蛋白SDS-PAGE图和主要蛋白条带的相对光密度图; 相同水稻品种, 小写字母相同者表示不同氮处理水平间的差异未达到统计显著水平(P < 0.05); 垂直棒代表3次生物学重复的标准误差。"

表3

温氮处理下水稻籽粒蛋白及其组分的含量差异"

氮水平
N level
温度处理
Temperature treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
总蛋白
Total protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
谷/醇比
Glu/prol
LN NT 0.81 b 0.84 b 0.53 a 6.45 b 8.52 c 0.19 a 0.19 a 0.12 a 1.49 a 12.17 c
HT1 0.87 b 0.95 a 0.51 a 7.03 a 9.29 b 0.19 a 0.21 a 0.11 a 1.52 a 13.48 b
HT2 1.09 a 1.03 b 0.46 b 6.98 a 9.41 a 0.20 a 0.20 a 0.09 b 1.38 b 15.17 a
平均 Mean 0.92 B 0.94 B 0.50 B 6.80 B 9.04 B 0.19 B 0.20 B 0.11 B 1.47 B 13.63 A
HN NT 0.93 b 1.02 b 0.61 a 7.15 b 9.77 b 0.21 a 0.23 ab 0.14 a 1.64 a 11.72 b
HT1 0.91 a 0.97 a 0.56 b 7.23 b 10.24 a 0.21 a 0.22 b 0.13 ab 1.66 a 13.15 a
HT2 1.07 a 1.18 a 0.58 ab 7.84 a 10.59 a 0.22 a 0.24 a 0.12 b 1.58 b 13.75 a
平均 Mean 0.97 A 1.06 A 0.58 A 7.41 A 10.20 A 0.21 A 0.23 A 0.13 A 1.63 A 12.84 B
氮肥效应 Nitrogen ** ** ** ** ** ** ** ** ** **
温度效应 Temperature ** ** ** ** ** ns * ** ** **
氮肥×温度
Nitrogen × temperature
** ** ** ** ** ns ns ns ** **

图3

温氮处理下水稻籽粒贮藏蛋白的SDS-PAGE及其主要蛋白条带的相对光密度差异 LN和HN分别表示高氮和低氮水平; NT、HT1和HT2分别表示常温处理(日均温度23℃)、高温I处理(日均温度30℃)和高温II处理(日均温度34℃)。A和B分别表示水稻籽粒贮藏蛋白SDS-PAGE图和主要蛋白条带的相对光密度图。小写字母相同者表示不同处理水平间的差异未达到统计显著水平(P < 0.05); 垂直棒代表3次生物学重复的标准误差。"

[1] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trend Plant Sci, 2009,14:133-139.
doi: 10.1016/j.tplants.2008.12.004
[2] 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998,12:172-176.
Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci, 1998,12:172-176 (in Chinese with English abstract).
[3] Liu J C, Zhao Q, Zhou L J, Cao Z Z, Shi C H, Cheng F M. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties. J Cereal Sci, 2017,76:42-55.
[4] Dong W, Chen J, Wang L, Tian Y, Zhang B, Lai Y, Meng Y, Qian C, Guo J. Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. Crop J, 2014,2:63-69.
[5] Champagne E, Bett-Garber K, Thomson J, Fitzgerald M. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chem, 2009,86:274-280.
[6] 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017,43:420-431.
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality. Acta Agron Sin, 2017,43:420-431 (in Chinese with English abstract).
[7] 金正勋, 秋太权, 孙艳丽, 赵久明, 金学泳. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001,7:31-35.
Jin Z X, Qiu T Q, Sun Y L, Zhao J M, Jin X Y. Effect of nitrogen fertilizer on chalkiness ratio and cooking and eating quality properties of rice grain. Plant Nutr Fert Sci, 2001,7:31-35 (in Chinese with English abstract).
[8] 陶进, 钱希旸, 剧成欣, 刘立军, 张耗, 顾骏飞, 王志琴, 杨建昌. 不同年代中籼水稻品种的米质及其对氮肥的响应. 作物学报, 2016,42:1352-1362.
Tao J, Qian X Y, Ju C X, Liu L J, Zhang H, Gu J F, Wang Z Q, Yang J C. Grain quality and its response to nitrogen fertilizer in mid-season indica rice varieties planted in different decades from 1950s to 2010s. Acta Agron Sin, 2016,42:1352-1362 (in Chinese with English abstract).
[9] 徐正进, 陈温福, 马殿荣, 吴晓冬, 郑煜焱, 王嘉宇. 辽宁水稻食味值及其与品质性状的关系. 作物学报, 2005,31:1092-1094.
Xu Z J, Chen W F, Ma D R, Wu X D, Zheng Y Y, Wang J Y. Relationship between eating quality and other quality characters of rice in Liaoning. Acta Agron Sin, 2005,31:1092-1094(in Chinese with English abstract).
[10] 胡雅杰, 朱大伟, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015,21:12-22.
Hu Y J, Zhu D W, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Modifying nitrogen fertilization ratio in increase the yield and nitrogen uptake of super japonica rice. Plant Nutr Fert Sci, 2015,21:12-22 (in Chinese with English).
[11] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 吕修涛, 万靓军, 黄银忠. 水稻氮肥精确后移及其机制. 作物学报, 2011,37:1837-1851.
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Lyu X T, Wan L J, Huang Y Z. Precise postponing nitrogen application and its mechanism in rice. Acta Agron Sin, 2011,37:1837-1851 (in Chinese with English abstract).
[12] 姚姝, 于新, 周丽慧, 陈涛, 赵庆勇, 朱镇, 张亚东, 赵春芳, 赵凌, 王才林. 氮肥用量和播期对优良食味粳稻直链淀粉含量的影响. 中国水稻科学, 2016,30:532-540.
Yao S, Yu X, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Zhang Y D, Zhao C F, Zhao L, Wang C L. Amylose content in good eating quality rice under different nitrogen rates and sowing dates. Chin J Rice Sci, 2016,30:532-540 (in Chinese with English abstract).
[13] 刘巧泉, 周丽慧, 王红梅, 顾铭洪. 水稻种子贮藏蛋白合成的分子生物学研究进展. 分子植物育种, 2008,6:1-15.
Liu Q Q, Zhou L H, Wang H M, Gu M H. Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed, 2008,6:1-15 (in Chinese with English abstract).
[14] 陈能, 罗玉坤, 谢黎虹, 朱智伟, 段彬伍, 章林平. 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报, 2006,32:1193-1196.
Chen N, Luo Y K, Xie L F, Zhu Z W, Duan B W, Zhang L P. Protein content and its correlation with other quality parameters of rice in China. Acta Agron Sin, 2006,32:1193-1196 (in Chinese with English abstract).
[15] Krishman P, Ramakrishnan B, Reddy K R, Reddy V R. High temperature effects on rice growth, yield and grain quality. Adv Agron, 2011,111:87-195.
[16] Hamaker B R, Griffin V K. Changing in the viscoelastic properties of cooked rice through protein disruption. Cereal Chem, 1990,67:261-264.
[17] Chrastil J. Correlations between the physicochemical and functional properties of rice. J Agric Food Chem, 1992,40:1683-1686.
[18] Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H S. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem, 2010,58:10545-10552.
doi: 10.1021/jf101575j pmid: 20839801
[19] Luthe D S. Storage protein accumulation in developing rice (Oryza sativa L.) seeds. Plant Sci Lett, 1983,32:147-158.
[20] Liu Z H, Cheng F M, Cheng W D, Zhang G P. Positional variations in phytic acid and protein content within a panicle of japonica rice. J Cereal Sci, 2005,41:279-303.
[21] Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol, 1986,27:135-145.
[22] Zakaria S, Matsuda T, Tajima S, Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci, 2002,5:160-168.
[23] Dou Z, Tang S, Chen W Z, Zhang H X, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Zhang H C, Ding Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J Cereal Sci, 2018,81:118-126.
[24] 梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010,24:398-402.
Liang C G, Chen L P, Wang Y, Liu J, Xu G L, Li T. Effects of high temperature on key enzyme activities of nitrogen metabolism and protein. Chin J Rice Sci, 2010,24:398-402 (in Chinese with English abstract).
[25] 马启林, 李阳生, 田小海, 鄢圣之, 雷慰慈, 中田升. 高温胁迫对水稻贮藏蛋白质的组成和积累形态的影响. 中国农业科学, 2009,42:714-718.
Ma Q L, Li Y S, Tian X H, Yan S Z, Lei W C, Nakata N. Influence of high temperature stress on composition and accumulation configuration of storage protein in rice. Sci Agric Sin, 2009,42:714-718 (in Chinese with English abstract).
[26] 周广洽, 徐孟亮, 谭周, 李训贞. 温光对稻米蛋白质及氨基酸含量的影响. 生态学报, 1997,17:537-542.
Zhou G Q, Xu M L, Tan Z, Li X Z. Effects of ecological factors of protein and amino acids of rice. Acta Ecol Sin, 1997,17:537-542 (in Chinese with English abstract).
[27] Altenbach S B. New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. J Cereal Sci, 2012,56:39-50.
[28] 韦克苏, 程方民, 董海涛, 张其芳, 刘奎刚, 曹珍珍. 水稻胚乳贮藏物代谢相关基因对花后高温胁迫响应的微阵列检测, 中国农业科学, 2010,43:1-11.
Wei K S, Cheng F M, Dong H T, Zhang Q F, Liu K G, Cao Z Z. Microarray analysis of gene expression profile related to grain storage metabolism in rice endosperms as affected by high temperature at filling stage. Sci Agric Sin, 2010,43:1-11 (in Chinese with English abstract).
[29] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 2007,144:258-277.
pmid: 17384160
[30] Ashida K, Araki E, Maruyama-Funatsuki W. Temperature during grain ripening affects the ratio of type-II/type-I protein body and starch pasting properties of rice (Oryza sativa L.). J Cereal Sci, 2013,57:153-159.
[31] Xia N, Wang J M, Gong Q, Yang X Q, Yin S W, Qi J R. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: comparison to alkaline extraction. J Cereal Sci, 2012,56:482-489.
[32] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004,101:9971-9975.
pmid: 15226500
[33] Dou Z, Tang S, Li G, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017,57:2183-2192.
[34] 戴云云, 丁艳锋, 王强盛, 李刚华, 刘正辉, 王绍华. 不同施氮水平下稻米品质对日间增温响应的差异. 植物营养与肥料学报, 2009,15:276-282.
Dai Y Y, Ding Y F, Wang Q S, Li G H, Liu Z H, Wang S H. Effect of high day-time temperature on rice quality under different panicle nitrogen treatments. Plant Nutr Fert Sci, 2009,15:276-282(in Chinese with English abstract).
[35] Tang S, Zhang H, Liu W, Dou Z, Zhou Q Y, Chen W Z, Wang S H, Ding Y F. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem, 2019,277:455-462.
doi: 10.1016/j.foodchem.2018.10.137 pmid: 30502170
[36] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013,27:591-602.
Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chin J Rice Sci, 2013,27:591-602 (in Chinese with English abstract).
[37] 吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007,27:734-739.
Wu C P, He M R, Zhang B, Zhang H H, Liu Y H. Effects of nitrogen dressing ratios and heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Bot Borea1i- Occident Sin, 2007,27:734-739 (in Chinese with English abstract).
[38] Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T. Carbon and nitrogen transport during grin filling in rice under high-temperature conditions. J Agron Crop Sci, 2009,195:368-376.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!