欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1430-1447.doi: 10.3724/SP.J.1006.2020.02017

• 耕作栽培·生理生化 • 上一篇    下一篇

控水增密模式对杂交籼稻减氮后产量形成的调控效应

李敏*(), 罗德强*(), 江学海, 蒋明金, 姬广梅, 李立江, 周维佳   

  1. 贵州省农业科学院水稻研究所, 贵州贵阳550006
  • 收稿日期:2020-03-08 接受日期:2020-06-02 出版日期:2020-09-12 网络出版日期:2020-06-17
  • 通讯作者: 李敏,罗德强
  • 基金资助:
    本研究由国家自然科学基金项目(31660369);贵州省科技基金项目资助(2016-1148)

Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions

LI Min*(), LUO De-Qiang*(), JIANG Xue-Hai, JIANG Ming-Jin, JI Guang-Mei, LI Li-Jiang, ZHOU Wei-Jia   

  1. Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2020-03-08 Accepted:2020-06-02 Published:2020-09-12 Published online:2020-06-17
  • Contact: Min LI,De-Qiang LUO
  • Supported by:
    National Natural Science Foundation of China(31660369);Science and Technology Foundation of Guizhou Province(2016-1148)

摘要:

以杂交籼稻品种成优981为试验材料, 于2017—2018年开展大田试验, 以常规高产栽培(N0W0D0)为对照: N0为施氮量187.5 kg hm-2、W0为湿润灌溉(0 kPa)、D0为密度20.0×104 hm-2, 在减氮10% (N-10%)和减氮30% (N-30%)条件下分别设置3种单一增密处理(W0D1、W0D2、W0D3; D1为增密20%、D2为增密40%、D3为增密60%)和9种控水增密耦合模式处理(W1D1、W1D2、W1D3、W2D1、W2D2、W2D3、W3D1、W3D2和W3D3; W1、W2、W3分别为轻、中、重干湿交替灌溉, 低限土壤水势分别为-10 kPa、-20 kPa和-30 kPa), 研究控水增密耦合模式对水稻不同程度减氮后产量形成的调控效应。结果表明: (1) 减氮10% (N-10%)条件下, 3种单一增密处理均较对照减产, 其中W0D1与对照相比产量差异不显著, 其成熟期干物质积累量略有提高, 但收获指数降低。9种控水增密模式中W1D1和W2D1分别较对照平均增产3.70%和1.19%, 前者差异达显著水平, 该2种模式的有效穗数与对照基本相当, 穗粒数分别降低3.50%和2.79%, 结实率分别提高3.04%和2.37%, 千粒重分别增加0.71%和0.35%, 2种模式增产的主要原因是分蘖成穗率分别提高3.88%和5.54%, 抽穗期高效叶面积指数分别提高2.77%和0.59%, 同时成熟期干物质积累总量与对照基本相当, 且穗部干物质分配量分别增加3.87%和1.78%、穗部干物质分配比例分别增加5.50%和6.24%, 收获指数分别提高5.53%和5.93%。(2) 减氮30% (N-30%)条件下, 9种控水增密模式2年均较对照显著减产, 平均减产15.44%~30.85%, 其中W2D2和W1D2模式减产幅度较小。因此, 合理的控水增密耦合模式能在少量减氮条件下调控群体生长特性以实现水稻增产, 但过量减氮条件下控水增密模式的调控效应变弱、难以实现高产。

关键词: 杂交籼稻, 减氮, 控水, 增密, 调控

Abstract:

Rice is one of the most important staple food crops of the world, both water management and plant density are crucial factors for the growth and development of rice. However, little information has been known about the combined effects of water management and plant density on grain yield under nitrogen-reduction conditions in rice. Field experiments were conducted in the farm of Rice Research Institute of Guizhou Agricultural Sciences Academy in 2017 and 2018. The hybrid indica rice cultivar Chengyou 981 was selected as the material, and the conventional high-yielding cultivation model as the control (CK), of which the nitrogen application rate (N0) was 187.5 kg hm -2, the water management (W0) was wet irrigation, and the plant density (D0) was 20.0×104hm-2. Three models with increased density (W0D1: a density increased by 20%, W0D2: a density increased by 40%, and W0D3: a density increased by 60%) and nine combined models of controlled irrigation and increased density (W1D1, W1D2, W1D3, W2D1, W2D2, W2D3, W3D1, W3D2, and W3D3) were set to study the yield and its formation of rice under two nitrogen-reduction conditions. W1, alternate wetting and light drying irrigation with -10 kPa of the minimum soil water potential; W2, alternate wetting and moderate drying irrigation with -20 kPa of the minimum soil water potential; and W3, alternate wetting and heavy drying irrigation with -30 kPa of the minimum soil water potential. The results were as follows: (1) When the nitrogen application was reduced by 10%, compared with CK, the grain yields of three increased density treatments were significantly decreased except W0D1, which had a slightly increased dry matter accumulation at maturity. Among the nine combined models of controlled water and increased density, the grain yields of W1D1 and W2D1 were 3.70% and 1.19% higher than that of CK, respectively. The effective panicle numbers of W1D1 and W2D1 were equivalent to that of CK, while the spikelet numbers per panicle decreased by 3.50% and 2.79%, seed-setting rates increased by 3.04% and 2.37%, and 1000-grain weights increased by 0.71% and 0.35%, respectively. Compared with CK, the higher grain yields of W1D1 and W2D1 were attributed to 3.88% and 5.54% higher percentage of productive tillers, 2.77% and 0.59% higher highly effective leaf area index at heading, 3.87% and 1.78% higher dry matter accumulation in panicles, 5.50% and 6.24% higher percentage of dry matter accumulation in panicles, 5.53% and 5.93% higher harvest index, and the equivalent total dry matter accumulation at maturity, respectively. (2) When the nitrogen application was reduced by 30%, the grain yields of nine combined models of controlled water and increased density were significantly decreased by 15.44%-30.85% as compared with CK. W2D2 and W1D2 had the smallest yield reductions. Therefore, the reasonable combined model of controlled water and increased density under a small amount of nitrogen-reduction could improve the growth characteristics of rice plants and increase grain yield, while the regulatory effects of controlled water and increased density became weaker and resulted in significantly lower grain yield under the excessive nitrogen-reduction.

Key words: hybrid indica rice, nitrogen-reduction, controlled irrigation, increased density, regulation

表1

2017-2018年不同年份间相同试验处理下主要指标的方差分析(F值)"

方差分析
Analysis of variance
产量
Grain yield
分蘖成穗率
Percentage of
productive tillers
抽穗期高效叶面积指数Highly effective leaf area index at heading 干物质积累总量
Above ground
biomass
收获指数
Harvest index
年度Year (Y) 44.37** 2.56 ns 3.12 ns 44.37** 1.28 ns
年度×栽培模式Y×cultivation model 1.49 ns 1.21 ns 0.87 ns 1.49 ns 0.25 ns

表2

水稻产量性状的方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-test
显著性
Significance
2017 有效穗数
Effective panicle number
栽培模式CM 26 64,855.21 2494.43 28.02 < 0.01
误差Residual 52 4628.72 89.01
总变异Total 80 74,751.38
穗粒数
Spikelets per panicle
栽培模式CM 26 5941.52 228.52 24.32 < 0.01
误差Residual 52 488.6 9.4
总变异Total 80 6738.84
结实率
Seed-setting rate
栽培模式CM 26 1596.92 61.42 65.32 < 0.01
误差Residual 52 48.9 0.94
总变异Total 80 1669.74
性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-test
显著性
Significance
千粒重
1000-grain weight
栽培模式CM 26 16.02 0.62 37.94 < 0.01
误差Residual 52 0.84 0.02
总变异Total 80 17.14
产量
Grain yield
栽培模式CM 26 116.92 4.5 83.38 < 0.01
误差Residual 52 2.8 0.05
总变异Total 80 122.7
2018 有效穗数
Effective panicle number
栽培模式CM 26 46,008.26 1769.55 25.58 < 0.01
误差Residual 52 3597.48 69.18
总变异Total 80 51,346.7
穗粒数
Spikelets per panicle
栽培模式CM 26 4424.28 170.16 6.54 < 0.01
误差Residual 52 1353.34 26.03
总变异Total 80 5974.32
结实率
Seed-setting rate
栽培模式CM 26 1339.77 51.53 36.97 < 0.01
误差Residual 52 72.47 1.39
总变异Total 80 1482.09
千粒重
1000-grain weight
栽培模式CM 26 13.66 0.53 17.85 < 0.01
误差Residual 52 1.53 0.03
总变异Total 80 15.7
产量 栽培模式CM 26 91.41 3.52 19.77 < 0.01
Grain yield 误差Residual 52 9.25 0.18
总变异Total 80 102.23

表3

控水增密对水稻减氮后产量及其构成的影响(2017)"

栽培模式
Cultivation model
有效穗数
Effective panicle number
(×104 hm-2)
穗粒数
Spikelets per panicle
颖花量
Total spikelets
(×104 hm-2)
结实率
Seed-
setting rate
(%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
减氮
Nitrogen
reduction
控水增密
Water and density
treatment
N0 W0D0 (CK) 276.2±10.6 200.3±5.7 55,287±1066 82.6±0.4 28.3±0.2 12.02±0.35
N-10% W0D0 255.1±6.7 189.2±4.0 48,256±1143 83.2±0.7 28.5±0.1 11.04±0.32
N-10% W0D1 288.4±17.2 183.6±5.9 52,883±1540 83.2±0.7 28.1±0.1 11.81±0.28
N-10% W0D2 307.3±7.1 175.3±2.6 53,862±997 75.1±0.7 27.6±0.2 11.10±0.35
N-10% W0D3 327.7±16.1 165.9±3.8 54,347±2421 69.6±2.3 27.1±0.1 9.52±0.37
N-10% W1D1 279.3±7.2 189.5±2.8 52,927±1541 85.1±0.5 28.5±0.2 12.49±0.51
N-10% W1D2 295.7±14.9 183.1±1.9 54,124±2181 77.6±0.3 28.1±0.2 11.24±0.38
N-10% W1D3 322.8±13.8 175.2±3.4 56,540±2161 70.3±0.5 27.1±0.1 9.68±0.49
N-10% W2D1 267.2±12.3 196.4±4.5 52,442±1179 84.5±0.7 28.4±0.2 12.20±0.62
N-10% W2D2 279.3±9.6 196.3±3.8 54,802±826 79.3±0.5 28.1±0.1 11.31±0.26
N-10% W2D3 298.8±20.4 188.8±5.0 56,346±2365 73.1±0.5 27.5±0.1 10.50±0.36
N-10% W3D1 256.9±4.9 201.3±1.8 51,715±1160 79.1±0.2 28.1±0.1 10.63±0.15
N-10% W3D2 268.8±6.9 197.2±2.0 52,998±839 77.2±0.9 27.8±0.2 10.28±0.19
N-10% W3D3 288.4±9.6 187.8±2.1 54,148±1230 72.3±1.7 27.6±0.0 9.84±0.12
N-30% W0D0 231.2±4.9 180.1±3.6 41,637±1099 83.8±2.4 28.6±0.1 9.05±0.15
栽培模式
Cultivation model
有效穗数
Effective panicle number
(×104 hm-2)
穗粒数
Spikelets per panicle
颖花量
Total spikelets
(×104 hm-2)
结实率
Seed-
setting rate
(%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
减氮
Nitrogen
reduction
控水增密
Water and density
treatment
N-30% W0D1 237.5±19.3 182.2±6.4 43,191±2007 81.2±1.3 27.5±0.0 8.91±0.36
N-30% W0D2 263.3±11.4 176.3±2.0 46,410±1742 80.6±2.3 27.3±0.2 9.12±0.28
N-30% W0D3 283.6±12.2 170.7±2.3 48,414±2285 73.9±2.1 27.2±0.1 8.69±0.32
N-30% W1D1 229.7±18.7 188.1±7.4 43,166±3171 82.3±1.7 28.0±0.1 9.07±0.16
N-30% W1D2 253.9±22.8 186.3±3.1 47,260±3572 81.1±0.6 27.8±0.1 9.87±0.41
N-30% W1D3 274.8±20.4 179.5±4.4 49,283±2929 74.4±1.1 27.2±0.1 9.18±0.16
N-30% W2D1 222.2±11.7 191.3±2.3 42,489±1722 82.1±0.5 28.0±0.2 8.78±0.30
N-30% W2D2 249.2±3.3 190.4±3.3 47,450±1179 80.5±0.9 27.7±0.1 10.07±0.25
N-30% W2D3 267.3±19.1 182.6±3.7 48,778±2899 74.5±1.1 27.3±0.0 9.17±0.20
N-30% W3D1 214.7±12.1 191.0±3.4 40,995±2055 78.5±0.5 28.0±0.1 8.22±0.37
N-30% W3D2 241.6±15.5 189.3±2.0 45,743±3163 77.0±0.7 27.8±0.4 8.95±0.22
N-30% W3D3 258.3±6.1 186.7±3.0 48,216±847 73.1±0.3 27.4±0.2 8.79±0.26
LSD0.05 22.16 6.29 3263.90 1.90 0.24 0.53

表4

控水增密对水稻减氮后产量及其构成的影响(2018)"

栽培模式Cultivation model 有效穗数
Effective panicle number
(×104 hm-2)
穗粒数
Spikelets per panicle
颖花量
Total spikelets
(×104 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
减氮
Nitrogen
reduction
控水增密
Water-density
treatment
N0 W0D0(CK) 264.1±4.7 198.4±3.4 52,388±351 82.1±1.8 28.2±0.2 11.43±0.23
N-10% W0D0 255.0±5.7 193.2±5.1 49,250±734 82.8±1.2 28.3±0.1 10.51±0.18
N-10% W0D1 263.8±9.2 192.6±3.1 50,795±1352 82.3±0.7 28.2±0.0 11.32±0.26
N-10% W0D2 279.4±6.9 187.7±1.8 52,436±911 78.6±1.3 27.8±0.1 10.71±0.34
N-10% W0D3 303.5±16.3 173.9±2.0 52,779±2937 68.9±1.7 27.0±0.4 9.09±0.17
N-10% W1D1 258.9±8.3 195.2±1.9 50,528±1196 84.6±1.0 28.4±0.2 11.63±0.24
N-10% W1D2 275.3±11.8 190.6±4.4 52,494±3145 79.3±1.7 28.0±0.3 10.98±0.48
N-10% W1D3 298.2±9.4 175.2±2.1 52,232±1075 70.1±3.0 27.1±0.1 9.17±0.15
N-10% W2D1 256.2±9.1 191.2±2.4 48,974±1313 84.1±1.5 28.3±0.2 11.48±0.07
N-10% W2D2 269.1±10.7 186.8±3.8 50,253±1698 80.1±1.5 28.0±0.3 11.05±0.39
N-10% W2D3 282.6±5.1 175.1±3.1 49,479±912 73.8±1.6 27.6±0.3 9.47±0.31
N-10% W3D1 232.8±6.2 190.7±3.5 44,385±886 82.2±1.4 28.0±0.3 9.78±0.10
N-10% W3D2 245.9±9.4 187.4±4.3 46,099±2598 80.2±1.6 27.6±0.3 9.66±0.42
N-10% W3D3 255.8±12.9 181.2±2.4 46,346±2299 75.9±1.3 27.3±0.2 9.03±0.22
N-30% W0D0 228.2±8.4 185.6±1.0 42,349±1378 83.6±0.6 28.6±0.0 9.29±0.12
N-30% W0D1 222.7±8.9 182.6±1.8 40,661±1544 82.9±2.0 28.1±0.1 9.11±0.29
N-30% W0D2 239.5±10.9 180.1±1.9 43,142±2263 80.5±0.4 28.0±0.2 9.40±0.26
栽培模式Cultivation model 有效穗数
Effective panicle number
(×104 hm-2)
穗粒数
Spikelets per panicle
颖花量
Total spikelets
(×104 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
减氮
Nitrogen
reduction
控水增密
Water-density
treatment
N-30% W0D3 247.9±10.4 175.3±16.9 43,552±5699 78.4±0.8 27.5±0.1 8.61±1.28
N-30% W1D1 219.8±8.2 185.7±3.6 40,816±1692 84.6±2.5 28.5±0.1 9.32±0.20
N-30% W1D2 236.4±7.3 182.4±2.0 43,118±1326 83.1±0.4 28.2±0.2 9.58±0.20
N-30% W1D3 245.6±13.1 172.1±6.9 42,299±3394 80.6±1.6 27.7±0.2 8.73±0.50
N-30% W2D1 216.8±10.8 182.6±11.2 39,526±1644 83.5±3.2 28.3±0.2 8.84±0.58
N-30% W2D2 236.0±15.1 183.2±6.8 43,292±4217 83.9±2.1 28.2±0.3 9.76±0.75
N-30% W2D3 242.7±5.2 172.2±4.0 41,795±1435 80.4±1.1 27.7±0.2 8.85±0.74
N-30% W3D1 210.3±16.6 179.2±0.9 37,676±2769 82.1±1.2 28.0±0.2 7.99±0.57
N-30% W3D2 222.9±3.4 176.9±8.1 39,423±1616 81.3±1.1 27.7±0.0 8.42±0.42
N-30% W3D3 234.9±8.7 174.2±3.5 40,939±2319 75.6±1.9 27.4±0.3 8.02±0.41
LSD0.05 16.28 8.77 3712.90 2.66 0.32 0.73

表5

水稻分蘖性状的方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
拔节期茎蘖数
Tillers at elongation
栽培模式CM 26 166,840.3 6416.94 64.03 < 0.01
误差Residual 52 5211.16 100.21
总变异Total 80 176,864.6
抽穗期茎蘖数
Tillers at heading
栽培模式CM 26 73,586.9 2830.3 20.38 < 0.01
误差Residual 52 7497.9 138.8
总变异Total 80 81,084.7
成熟期茎蘖数
Tillers at maturity
栽培模式CM 26 64,855.2 2494.4 13.61 < 0.01
误差Residual 54 9896.2 183.3
总变异Total 80 74,751.4
成穗率
Percentage of
productive tillers
栽培模式CM 26 370.87 14.26 1.01 ns
误差Residual 52 730.94 14.06
总变异Total 80 1141.71

表6

控水增密对水稻减氮后分蘖性状的影响"

栽培模式Cultivation model 群体茎蘖数Tillers per unit area (×104 hm-2) 分蘖成穗率
Percentage of
productive tillers (%)
减氮
Nitrogen reduction
控水增密
Water-density
treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
N0 W0D0 (CK) 373.5±10.5 294.1±5.8 276.2±10.6 73.9±1.4
N-10% W0D0 348.1±9.8 278.0±6.1 255.1±6.7 73.3±0.5
N-10% W0D1 387.2±13.8 298.2±19.5 288.4±17.2 74.5±2.7
N-10% W0D2 416.8±13.5 327.5±8.4 307.3±7.1 73.8±1.6
N-10% W0D3 459.9±20.0 359.6±8.8 327.7±16.1 71.3±3.5
N-10% W1D1 361.6±8.2 292.5±6.3 279.3±7.2 77.2±0.7
N-10% W1D2 394.5±14.1 312.2±13.7 295.7±14.9 74.9±1.2
N-10% W1D3 448.4±16.9 352.6±11.5 322.8±13.8 72.0±1.4
N-10% W2D1 340.5±12.7 283.5±11.2 267.2±12.3 78.5±1.5
N-10% W2D2 370.5±12.7 316.7±17.8 279.3±9.6 75.4±3.2
N-10% W2D3 408.2±8.9 334.5±13.8 298.8±20.4 73.2±5.0
N-10% W3D1 321.3±14.7 270.2±8.9 256.9±4.9 80.1±3.4
N-10% W3D2 350.9±15.1 292.5±6.3 268.8±6.9 76.6±1.3
N-10% W3D3 389.8±9.5 310.6±12.1 288.4±9.6 74.0±1.9
N-30% W0D0 307.5±26.9 267.1±7.7 231.2±4.9 75.7±7.9
N-30% W0D1 315.9±14.9 265.7±10.6 237.5±19.3 75.1±3.6
N-30% W0D2 357.4±18.3 287.3±6.9 263.3±11.4 73.8±3.6
N-30% W0D3 389.2±24.4 311.6±10.3 283.6±12.2 73.2±7.4
N-30% W1D1 297.0±6.7 249.2±11.4 229.7±18.7 77.3±5.0
N-30% W1D2 336.2±7.4 272.9±17.3 253.9±22.8 75.5±6.8
N-30% W1D3 373.5±5.7 298.5±6.5 274.8±20.4 73.5±4.4
N-30% W2D1 286.4±6.2 241.6±13.7 222.2±11.7 77.6±3.7
N-30% W2D2 327.0±5.8 268.5±10.2 249.2±3.3 76.2±1.0
N-30% W2D3 358.5±11.1 294.2±22.7 267.3±19.1 74.6±6.2
N-30% W3D1 268.7±9.2 234.0±10.2 214.7±12.1 79.9±3.1
N-30% W3D2 316.4±12.6 267.1±12.5 241.6±15.5 76.3±2.4
N-30% W3D3 345.5±10.1 285.4±5.6 258.3±6.1 74.8±1.2
LSD0.05 22.30 19.29 22.16 6.19

表7

水稻叶面积性状的方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
叶面积指数
Leaf area index
栽培模式CM 26 20.52 0.79 22.97 < 0.01
误差Residual 52 1.79 0.03
总变异Total 80 23.75
高效叶面积指数
Highly effective leaf area index
栽培模式CM 26 3.99 0.15 3.49 < 0.01
误差Residual 52 2.29 0.04
总变异Total 80 7.04
高效叶面积率
Percentage of highly effective leaf area index
栽培模式CM 26 459.69 17.68 1.93 < 0.05
误差Residual 52 477.00 9.17
总变异Total 80 940.60

表8

控水增密对水稻减氮后抽穗期叶面积指数的影响"

栽培模式Cultivation model 叶面积指数
Leaf area index
高效叶面积指数
Highly effective leaf area index
高效叶面积率
Percentage of highly effective leaf area index (%)
减氮
Nitrogen reduction
控水增密
Water-density treatment
N0 W0D0 (CK) 7.82±0.10 5.05±0.07 64.58±0.57
N-10% W0D0 7.37±0.10 4.78±0.18 64.85±1.92
N-10% W0D1 7.85±0.14 5.01±0.24 63.82±2.77
N-10% W0D2 8.12±0.14 5.08±0.37 62.58±4.83
N-10% W0D3 8.29±0.34 4.89±0.11 59.02±1.41
N-10% W1D1 7.83±0.34 5.19±0.19 66.40±4.53
N-10% W1D2 8.08±0.21 5.12±0.20 63.36±1.41
N-10% W1D3 8.22±0.18 5.03±0.12 61.21±2.03
N-10% W2D1 7.71±0.18 5.08±0.07 65.92±2.19
N-10% W2D2 7.96±0.24 5.03±0.19 63.27±4.19
N-10% W2D3 8.11±0.11 4.97±0.28 61.27±3.11
N-10% W3D1 7.69±0.25 4.87±0.09 63.35±1.17
N-10% W3D2 7.82±0.28 4.78±0.23 61.11±0.94
N-10% W3D3 7.89±0.27 4.75±0.20 60.22±2.34
N-30% W0D0 6.72±0.13 4.43±0.28 65.89±3.05
N-30% W0D1 7.09±0.36 4.56±0.35 64.46±6.60
N-30% W0D2 7.46±0.31 4.77±0.44 63.85±3.38
N-30% W0D3 7.77±0.43 4.91±0.42 63.17±3.30
N-30% W1D1 7.12±0.21 4.71±0.08 66.19±2.17
N-30% W1D2 7.41±0.26 4.88±0.26 65.86±2.94
N-30% W1D3 7.68±0.11 4.86±0.07 63.29±1.12
N-30% W2D1 6.89±0.24 4.72±0.12 68.55±2.58
N-30% W2D2 7.13±0.19 4.65±0.14 65.23±1.84
N-30% W2D3 7.44±0.22 4.61±0.45 61.88±4.13
N-30% W3D1 6.33±0.18 4.39±0.20 69.39±3.54
N-30% W3D2 6.66±0.44 4.44±0.28 66.69±1.89
N-30% W3D3 7.14±0.15 4.57±0.12 64.02±2.05
LSD0.05 0.40 0.40 4.89

表9

水稻干物质积累量及收获指数的方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
拔节期干物质量
Dry matter at elongation
栽培模式CM 26 26.54 1.02 66.23 < 0.01
误差Residual 52 0.80 0.02
总变异Total 80 27.64
抽穗期干物质量
Dry matter at heading
栽培模式CM 26 170.36 6.55 111.45 < 0.01
误差Residual 52 3.06 0.06
总变异Total 80 175.72
成熟期干物质量
Dry matter at maturity
栽培模式CM 26 454.03 17.46 60.68 < 0.01
误差Residual 52 14.96 0.29
总变异Total 80 484.13
收获指数
Harvest index
栽培模式CM 26 0.15 0.01 23.55 < 0.01
误差Residual 52 0.01 0
总变异Total 80 0.16

表10

控水增密对水稻减氮后干物质积累量及收获指数的影响"

栽培模式Cultivation model 干物质积累量Dry matter accumulation (t hm-2) 收获指数
Harvest index
减氮
Nitrogen reduction
控水增密
Water-density treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
N0 W0D0 (CK) 4.8±0.2 12.6±0.4 22.6±0.9 0.532±0.005
N-10% W0D0 4.2±0.2 11.6±0.4 21.0±1.2 0.526±0.015
N-10% W0D1 4.7±0.2 13.1±0.5 22.7±1.2 0.521±0.016
N-10% W0D2 5.0±0.2 13.4±0.4 23.1±0.9 0.481±0.005
N-10% W0D3 5.2±0.1 13.9±0.1 23.8±0.9 0.400±0.011
N-10% W1D1 4.3±0.1 12.3±0.2 22.2±1.0 0.563±0.001
N-10% W1D2 4.6±0.2 12.7±0.2 22.4±1.2 0.502±0.013
N-10% W1D3 4.9±0.2 13.0±0.2 23.3±0.6 0.416±0.022
N-10% W2D1 4.2±0.1 12.1±0.3 21.6±0.8 0.565±0.020
N-10% W2D2 4.4±0.1 12.3±0.2 22.3±0.9 0.507±0.011
栽培模式Cultivation model 干物质积累量Dry matter accumulation (t hm-2) 收获指数
Harvest index
减氮
Nitrogen reduction
控水增密
Water-density treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
N-10% W2D3 4.7±0.1 12.7±0.2 22.9±0.7 0.459±0.011
N-10% W3D1 3.8±0.1 11.8±0.3 18.8±0.9 0.567±0.035
N-10% W3D2 4.2±0.2 12.2±0.2 20.8±1.1 0.495±0.017
N-10% W3D3 4.4±0.1 12.6±0.2 21.1±0.4 0.467±0.014
N-30% W0D0 3.6±0.1 9.1±0.3 16.6±1.0 0.547±0.041
N-30% W0D1 3.8±0.1 9.9±0.2 16.8±0.5 0.530±0.010
N-30% W0D2 4.0±0.2 10.7±0.3 18.9±0.4 0.482±0.007
N-30% W0D3 4.5±0.2 11.5±0.4 19.7±0.2 0.441±0.016
N-30% W1D1 3.4±0.0 9.4±0.4 16.7±0.7 0.544±0.013
N-30% W1D2 3.7±0.2 10.2±0.3 18.8±0.6 0.525±0.006
N-30% W1D3 4.3±0.1 11.0±0.6 19.5±0.3 0.471±0.002
N-30% W2D1 3.2±0.1 9.5±0.3 16.5±0.3 0.532±0.010
N-30% W2D2 3.6±0.1 10.0±0.3 19.0±0.2 0.530±0.011
N-30% W2D3 3.9±0.2 10.3±0.4 19.4±0.3 0.473±0.005
N-30% W3D1 3.0±0.1 9.1±0.4 15.6±0.3 0.527±0.016
N-30% W3D2 3.3±0.3 9.4±0.3 18.5±0.1 0.484±0.014
N-30% W3D3 3.6±0.1 9.9±0.4 19.1±0.3 0.460±0.008
LSD0.05 0.23 0.52 1.22 0.026

表11

水稻产量性状的方差分析"

性状
Trait
变异来源 自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
Source of
variation
拔节前干物质量 栽培模式CM 26 26.54 1.02 66.23 < 0.01
Dry matter before elongation stage 误差Residual 52 0.80 0.02
总变异Total 80 27.64
拔节抽穗期干物质量
Dry matter from elongation stage to heading stage
栽培模式CM 26 70.70 2.72 38.73 < 0.01
误差Residual 52 3.65 0.07
总变异Total 80 75.30
抽穗成熟期干物质量
Dry matter from heading stage to maturity stage
栽培模式CM 26 99.90 3.84 12.47 < 0.01
误差Residual 52 16.02 0.31
总变异Total 80 122.46
性状
Trait
变异来源 自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
Source of
variation
拔节前干物质比例
Rate of dry matter before elongation stage
栽培模式CM 26 113.02 4.35 8.1 < 0.01
误差Residual 52 27.90 0.54
总变异Total 80 145.11
拔节抽穗期干物质比例
Rate of dry matter from elongation stage to heading stage
栽培模式CM 26 378.76 14.57 4.99 < 0.01
误差Residual 52 151.77 2.92
总变异Total 80 538.52
抽穗成熟期干物质比例
Rate of dry matter from heading stage to maturity stage
栽培模式CM 26 517.65 19.91 5.83 < 0.01
误差Residual 52 177.73 3.42
总变异Total 80 719.18

表12

控水增密对水稻减氮后干物质阶段积累量及比例的影响"

栽培模式Cultivation model 阶段积累量Dry matter accumulation (t hm-2) 干物质积累比例Dry matter accumulation rate (%)
减氮
Nitrogen
reduction
控水增密
Water-density
treatment
拔节前
Sowing to elongation stage
拔节-抽穗
Elongation stage to
heading stage
抽穗-成熟
Heading stage to maturity stage
拔节前
Sowing to
elongation stage
拔节-抽穗
Elongation stage to heading stage
抽穗-成熟
Heading stage to
maturity stage
N0 W0D0 (CK) 4.8±0.2 7.8±0.3 10.0±0.5 21.2±0.5 34.5±0.5 44.2±1.0
N-10% W0D0 4.2±0.2 7.4±0.3 9.4±0.9 20.0±0.4 35.3±1.8 44.7±2.0
N-10% W0D1 4.7±0.2 8.4±0.4 9.6±0.8 20.7±0.5 37.0±0.8 42.3±1.3
N-10% W0D2 5.0±0.2 8.4±0.2 9.7±0.6 21.7±0.2 36.4±1.0 42.0±1.2
N-10% W0D3 5.2±0.1 8.7±0.1 9.9±0.8 21.9±0.7 36.6±1.2 41.6±1.8
N-10% W1D1 4.3±0.1 8.0±0.1 9.9±0.9 19.4±0.5 36.1±1.6 44.5±2.1
N-10% W1D2 4.6±0.2 8.1±0.1 9.7±1.0 20.6±0.4 36.2±1.9 43.2±2.2
N-10% W1D3 4.9±0.2 8.1±0.4 10.3±0.6 21.0±0.8 34.8±1.8 44.2±1.7
N-10% W2D1 4.2±0.1 7.9±0.3 9.5±0.5 19.5±0.8 36.6±0.8 44.0±0.9
N-10% W2D2 4.4±0.1 7.9±0.1 10.0±0.8 19.7±0.5 35.5±1.1 44.8±1.6
N-10% W2D3 4.7±0.1 8.0±0.1 10.2±0.5 20.5±0.3 35.0±0.7 44.5±1.0
N-10% W3D1 3.8±0.1 8.0±0.2 7.0±0.9 20.2±0.6 42.6±2.3 37.2±2.9
N-10% W3D2 4.2±0.2 8.0±0.0 8.6±1.1 20.2±1.1 38.5±2.1 41.2±2.9
N-10% W3D3 4.4±0.1 8.2±0.2 8.5±0.5 20.9±0.4 38.9±1.5 40.3±1.8
N-30% W0D0 3.6±0.1 5.5±0.4 7.5±1.0 21.8±1.8 33.2±2.3 45.1±3.4
N-30% W0D1 3.8±0.1 6.1±0.2 6.9±0.3 22.6±0.7 36.3±0.5 41.1±0.6
N-30% W0D2 4.0±0.2 6.7±0.4 8.2±0.4 21.2±1.0 35.5±2.3 43.4±1.6
N-30% W0D3 4.5±0.2 7.0±0.2 8.2±0.3 22.8±0.8 35.5±0.8 41.6±1.5
N-30% W1D1 3.4±0.0 6.0±0.4 7.3±0.8 20.4±0.8 36.0±3.0 43.7±3.4
N-30% W1D2 3.7±0.2 6.5±0.4 8.6±0.5 19.7±0.7 34.6±2.3 45.7±1.6
N-30% W1D3 4.3±0.1 6.7±0.5 8.5±0.5 22.1±0.2 34.4±2.7 43.6±2.7
N-30% W2D1 3.2±0.1 6.3±0.2 7.0±0.1 19.4±0.4 38.2±0.5 42.4±0.8
N-30% W2D2 3.6±0.1 6.4±0.2 9.0±0.3 19.0±0.5 33.7±1.0 47.4±1.4
N-30% W2D3 3.9±0.2 6.4±0.6 9.1±0.2 20.1±1.0 33.0±2.5 46.9±1.6
N-30% W3D1 3.0±0.1 6.1±0.4 6.5±0.4 19.2±0.9 39.1±2.7 41.7±2.4
N-30% W3D2 3.3±0.3 6.1±0.0 9.1±0.3 17.8±1.5 33.0±0.2 49.2±1.5
N-30% W3D3 3.6±0.1 6.3±0.4 9.2±0.2 18.9±0.4 33.0±1.5 48.2±1.4
LSD0.05 0.23 0.48 1.06 1.27 2.82 3.17

表13

水稻干物质分配的方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean squares
F
F-value
显著性
Significance
茎鞘干物质分配量
Dry matter allocation in stem and sheath
栽培模式CM 26 52.70 2.03 14.03 < 0.01
误差Residual 52 7.51 0.14
总变异Total 80 61.20
叶片干物质分配量
Dry matter allocation in leaf
栽培模式CM 26 69.44 2.67 173.65 < 0.01
误差Residual 52 0.80 0.02
总变异Total 80 70.56
穗部干物质分配量
Dry matter allocation in panicle
栽培模式CM 26 130.98 5.04 13.34 < 0.01
误差Residual 52 19.63 0.38
总变异Total 80 158.31
茎鞘干物质分配比例
Dry matter allocation rate in stem and sheath
栽培模式CM 26 284.86 10.96 2.67 < 0.01
误差Residual 52 213.76 4.11
总变异Total 80 520.57
叶片干物质分配比例
Dry matter allocation rate in leaf
栽培模式CM 26 779.72 29.99 59.74 < 0.01
误差Residual 52 26.10 0.5
总变异Total 80 805.86
穗部干物质分配比例
Dry matter allocation rate in panicle
栽培模式CM 26 1482.41 57.02 11.34 < 0.01
误差Residual 52 261.48 5.03
总变异Total 80 1767.02

表14

控水增密对水稻减氮后干物质分配的影响"

栽培模式Cultivation model 干物质分配量Dry matter allocation (t hm-2) 干物质分配比例Dry matter allocation rate (%)
减氮
Nitrogen reduction
控水增密
Water-density treatment
茎鞘
Stem and sheath
叶片
Leaf

Panicle
茎鞘
Stem and sheath
叶片
Leaf

Panicle
N0 W0D0(CK) 6.8±0.2 3.5±0.1 12.3±0.6 30.1±0.7 15.5±0.2 54.4±0.8
N-10% W0D0 6.4±0.2 3.3±0.1 11.3±1.0 30.5±1.0 15.8±0.9 53.7±1.8
N-10% W0D1 7.1±0.1 3.5±0.0 12.1±1.2 31.3±1.4 15.5±0.8 53.2±2.3
N-10% W0D2 7.5±0.1 4.2±0.2 11.4±0.9 32.5±1.4 18.2±0.9 49.3±2.2
栽培模式Cultivation model 干物质分配量Dry matter allocation (t hm-2) 干物质分配比例Dry matter allocation rate (%)
减氮
Nitrogen reduction
控水增密
Water-density treatment
茎鞘
Stem and sheath
叶片
Leaf

Panicle
茎鞘
Stem and sheath
叶片
Leaf

Panicle
N-10% W0D3 8.1±0.2 5.9±0.3 9.8±0.5 34.1±0.7 24.8±0.4 41.2±0.5
N-10% W1D1 6.4±0.4 3.1±0.1 12.7±0.6 28.8±0.6 14.0±0.7 57.2±0.3
N-10% W1D2 7.1±0.2 3.8±0.1 11.5±1.0 31.7±1.3 17.0±0.7 51.3±1.8
N-10% W1D3 7.8±0.2 5.5±0.3 10.0±0.4 33.5±0.3 23.6±1.1 42.9±1.4
N-10% W2D1 6.2±0.2 2.9±0.0 12.5±0.6 28.7±0.2 13.4±0.5 57.9±0.7
N-10% W2D2 7.1±0.2 3.5±0.2 11.7±0.9 31.9±0.6 15.7±1.3 52.4±1.8
N-10% W2D3 7.2±0.3 4.8±0.1 10.9±0.4 31.4±0.3 21.0±0.3 47.6±0.1
N-10% W3D1 5.3±0.3 2.5±0.2 11.0±0.7 28.2±1.6 13.3±0.2 58.5±1.4
N-10% W3D2 7.0±0.2 3.2±0.2 10.6±0.9 33.7±1.5 15.4±0.1 50.9±1.4
N-10% W3D3 6.9±0.1 4.0±0.2 10.2±0.4 32.7±1.1 19.0±0.6 48.3±0.8
N-30% W0D0 4.9±0.1 2.5±0.1 9.2±1.0 29.6±2.0 15.1±0.6 55.3±2.5
N-30% W0D1 5.5±0.3 2.4±0.1 8.9±0.7 32.8±2.0 14.3±0.9 52.9±2.8
N-30% W0D2 6.5±0.2 3.2±0.2 9.2±0.2 34.4±0.9 16.9±0.6 48.7±0.5
N-30% W0D3 6.8±0.2 4.1±0.2 8.8±0.1 34.5±0.8 21.0±0.8 44.5±0.1
N-30% W1D1 5.4±0.1 2.3±0.1 9.0±0.7 32.4±1.7 13.8±0.6 53.8±2.2
N-30% W1D2 6.0±0.1 2.8±0.1 10.0±0.7 32.0±1.5 14.9±0.8 53.2±2.1
N-30% W1D3 6.3±0.1 3.8±0.2 9.4±0.1 32.3±0.0 19.5±0.6 48.2±0.7
N-30% W2D1 5.4±0.1 2.2±0.1 8.9±0.1 32.7±0.4 13.3±0.4 53.9±0.4
N-30% W2D2 5.9±0.4 2.8±0.1 10.3±0.4 31.1±2.0 14.7±0.4 54.2±2.1
N-30% W2D3 6.1±0.2 3.8±0.2 9.5±0.1 31.4±0.5 19.6±0.6 49.0±1.1
N-30% W3D1 5.2±0.1 2.0±0.1 8.4±0.4 33.4±1.1 12.8±0.7 53.8±1.4
N-30% W3D2 6.3±0.1 3.1±0.2 9.1±0.3 34.1±0.7 16.8±1.0 49.2±1.4
N-30% W3D3 6.9±0.1 3.3±0.1 8.9±0.1 36.1±0.2 17.3±0.4 46.7±0.2
LSD0.05 0.31 0.24 1.04 1.86 1.13 2.47
[1] 安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用. 植物营养与肥料学报, 2015,21:846-852.
An N, Fan M S, Zhang F S. Best crop management practices increase rice yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2015,21:846-852 (in Chinese with English abstract).
[2] Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Luo D Q. Accumulation and utilization of nitrogen, phosphorus and potassium of rice cultivars with high yield and high N use efficiency. Field Crops Res, 2014,161:55-63.
[3] 魏海燕, 王亚江, 孟天瑶, 葛梦婕, 张洪程, 戴其根, 霍中洋, 许轲. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应. 应用生态学报, 2014,25:488-496.
Wei H Y, Wang Y J, Meng T Y, Ge M J, Zhang H C, Dai Q G, Huo Z Y, Xu K. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice. Chin J Appl Ecol, 2014,25:488-496 (in Chinese with English abstract).
[4] 张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. 作物学报, 2012,38:86-98.
Zhang H C, Ma Q, Yang X, Li M, Ge M J, Li G Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Liu Y Y. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin, 2012,38:86-98 (in Chinese with English abstract).
[5] Tang L, Xu Z J, Chen W F. Advances and prospects of super rice breeding in China. J Integr Agric, 2017,16:984-991.
[6] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J Integr Agric, 2017,16:1018-1027.
[7] Yang Z, Wang Z, Yang C, Yang Z, Li H, Wu Y. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Genes Genomics, 2019,41:1183-1194.
pmid: 31313105
[8] Huang M, Shan S L, Xie X B, Cao F B, Zou Y B. Why high grain yield can be achieved in single seedling machine transplanted hybrid rice under dense planting conditions? J Integr Agric, 2018,17:1299-1306.
[9] 胡雅杰, 曹伟伟, 钱海军, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 高辉, 沙安勤, 周有炎, 刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015,41:743-757.
Hu Y J, Cao W W, Qian H J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Gao H, Sha A Q, Zhou Y Y, Liu G L. Effect of planting density of mechanically transplanted pot seedlings on yield plant type and lodging resistance in rice with different panicle types. Acta Agron Sin, 2015,41:743-757 (in Chinese with English abstract).
[10] 许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响. 作物学报, 2015,41:1767-1776.
Xu J W, Meng T Y, Jing P P, Zhang H C, Li C, Dai Q G, Wei H Y, Guo B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice. Acta Agron Sin, 2015,41:1767-1776 (in Chinese with English abstract).
[11] 蒋鹏, 熊洪, 张林, 朱永川, 周兴兵, 刘茂, 郭晓艺, 徐富贤. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响. 植物营养与肥料学报, 2017,23:342-350.
Jiang P, Xiong H, Zhang L, Zhu Y C, Zhou X B, Liu M, Guo X Y, Xu F X. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions. Plant Nutr Fert Sci, 2017,23:342-350 (in Chinese with English abstract).
[12] 吴培, 陈天晔, 袁嘉琦, 黄恒, 邢志鹏, 胡雅杰, 朱明, 李德剑, 刘国林, 张洪程. 施氮量和直播密度互作对水稻产量形成特征的影响, 中国水稻科学, 2019,33:269-281.
Wu P, Chen T Y, Yuan J Q, Huang H, Xing Z P, Hu Y J, Zhu M, Li D J, Liu G L, Zhang H C. Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice. Chin J Rice Sci, 2019,33:269-281 (in Chinese with English abstract).
[13] 徐新朋, 周卫, 梁国庆, 孙静文, 王秀斌, 何萍, 徐芳森, 余喜初. 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2015,21:763-772.
Xu X P, Zhou W, Liang G Q, Sun J W, Wang X B, He P, Xu F S, Yu X C. Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems. Plant Nutr Fert Sci, 2015,21:763-772 (in Chinese with English abstract).
[14] 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016,27:453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China. Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract).
[15] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017,31:327-334.
Li J F, Yang J C. Research advances in the effects of water, nitrogen and their interaction on the yield, water and nitrogen use efficiencies of rice. Chin J Rice Sci, 2017,31:327-334 (in Chinese with English abstract).
[16] Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009,49:2246-2260.
[17] 张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质影响. 作物学报, 2013,39:84-92.
Zhang Z C, Li H W, Cao Z Q, Wang Z Q, Yang J C. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice. Acta Agron Sin, 2013,39:84-92 (in Chinese with English abstract)
[18] Lin X Q, Zhou W J, Zhu D F, Chen H Z, Zhang Y P. Nitrogen accumulation, remobilization and partitioning in rice under an improved irrigation practice. Field Crops Res, 2006,127:448-454.
[19] 王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004,37:497-501.
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Sci Agric Sin, 2004,37:497-501 (in Chinese with English abstract).
[20] Sun Y J, Ma J, Sun Y Y, Xu H, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res, 2012,127:85-98.
[21] 李敏. 水稻高产与氮高效的协同机理. 贵阳: 贵州科技出版社, 2019. pp 103-118.
Li M. The Coordination Mechanism of High Yield and High Nitrogen Use Efficiency in Rice. Guiyang: Guizhou Science and Technology Publishers, 2019. pp 103-118(in Chinese).
[22] 汤国平, 熊强强, 钟蕾, 陈小荣, 朱昌兰, 彭小松, 贺浩华. 双季早稻氮素亏缺补偿效应的形成及其生理机制初探. 核农学报, 2017,31:1585-1593.
Tang G P, Xiong Q Q, Zhong L, Chen X R, Zhu C L, Peng X S, He H H. Primary research on the formation and its physiological mechanism of nitrogen deficiency compensatory effects in double-season early rice. J Nucl Agric Sci, 2017,31:1585-1593 (in Chinese with English abstract).
[23] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018,63:2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018,63:2932-2943 (in Chinese with English abstract).
[24] 陈佳娜, 曹放波, 谢小兵, 单双吕, 高伟, 李志斌, 黄敏, 邹应斌. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响. 作物学报, 2016,42:1176-1187.
Chen J N, Cao F B, Xie X B, Shan S L, Gao W, Li Z B, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on yield and nitrogen use efficiency of machine- transplanted early-late season double cropping rice. Acta Agron Sin, 2016,42:1176-1187 (in Chinese with English abstract).
[25] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006,39:1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth anddevelopment characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006,39:1336-1345 (in Chinese with English abstract).
[26] 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015,48:1288-1299.
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Sci Agric Sin, 2015,48:1288-1299 (in Chinese with English abstract).
[27] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018,44:554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agron Sin, 2018,44:554-568 (in Chinese with English abstract).
[28] Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, Wu W, Chen M, Peng S. Agronomic performance of high-yielding rice variety grown under alternate wetting an drying irrigation. Field Crops Res, 2012,126:16-22.
[29] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016,42:1026-1036.
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016,42:1026-1036 (in Chinese with English abstract).
[1] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[4] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量
性状的影响及其相互关系
[J]. 作物学报, 2021, 47(5): 964-973.
[5] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展[J]. 作物学报, 2021, 47(12): 2299-2313.
[6] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
[7] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977.
[8] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[9] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[10] 王艳花,谢玲,杨博,曹艳茹,李加纳. 甘蓝型油菜开花相关基因的鉴定及进化与表达分析[J]. 作物学报, 2019, 45(8): 1137-1145.
[11] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[12] 于显枫,张绪成,方彦杰,陈光荣,王红丽,侯慧芝,马一凡,赵记军. 减氮追施和增密对全膜覆盖垄上微沟马铃薯水分利用及生长的影响[J]. 作物学报, 2019, 45(5): 764-776.
[13] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[14] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[15] 杨宇昕,桑志勤,许诚,代文双,邹枨. 利用WGCNA进行玉米花期基因共表达模块鉴定[J]. 作物学报, 2019, 45(2): 161-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!