作物学报 ›› 2019, Vol. 45 ›› Issue (2): 161-174.doi: 10.3724/SP.J.1006.2019.83053
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
Yu-Xin YANG1,Zhi-Qin SANG1,2,Cheng XU1,Wen-Shuang DAI1,Cheng ZOU1,*()
摘要:
权重基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)是系统生物学的一种研究方法, 在挖掘生物学数据与特定性状之间的生物学关系方面具有十分重要的作用。本研究利用玉米(Zea mays L.)自交系B73的14份不同发育阶段的转录组数据, 筛选掉低表达丰度的基因, 最终得到了22,426个高表达的基因用于创建基因表达矩阵; 利用不同组织作为性状, 创建表型矩阵。然后利用R软件中的WGCNA包建立了共表达网络, 共得到20个模块。本研究将与组织相关性高于0.65的模块定义为组织特异性模块, 最终鉴定到14个组织特异性模块。利用在线网站Agrigo对组织特异性模块中的基因进行GO (gene ontology)富集分析, 发现14个模块中均可以得到富集种类。开花作为玉米生育周期中的一个重要生理过程, 不仅代表着植物从营养生长到生殖生长的转变, 也关系到产量、株高和抗逆性等农艺性状。本研究发现8个组织特异性模块中的基因可以富集到与开花调控的代谢通 。此外, 有17个已经报道过的开花时间调控基因存在于共表达模块中, 并且主要分布在Blue模块和Darkmagenta模块, 因此本研究重点关注了这2个模块内部的基因调控网络。本研究通过计算不同组织中的基因表达丰度, 并联合权重基因共表达网络分析的方法, 鉴定到了具有生物学意义的共表达基因模块, 挖掘到了数个开花相关的模块, 有助于揭示玉米开花调控的遗传机制。
[1] |
Stuart J M, Segal E, Koller D, Kim S K . A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302:249-255.
doi: 10.1126/science.1087447 |
[2] |
Jeong H, Mason S P, Barabási A L, Oltvai Z N . Lethality and centrality in protein networks. Nature, 2001,411:41.
doi: 10.1038/35075138 pmid: 11333967 |
[3] |
Gille C, Hoffmann S, Holzhütter H G . METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol, 2007,1:5.
doi: 10.1186/1752-0509-1-5 pmid: 17408512 |
[4] |
Barabási A L, Oltvai Z N . Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004,5:101-113.
doi: 10.1038/nrg1272 |
[5] |
Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lv L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L . Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705 |
[6] |
Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R . Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 5628015 |
[7] |
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z . Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
doi: 10.1104/pp.114.237529 pmid: 24828307 |
[8] |
Vlăduţu C, McLaughlin J, Phillips R L . Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153:993-1007.
doi: 10.1017/S0016672399004012 pmid: 10511573 |
[9] | Wong A Y, Colasanti J . Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot, 2007,58:403-414. |
[10] |
Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N . Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646 |
[11] | Meng X, Muszynski M G, Danilevskaya O N . The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960. |
[12] |
Danilevskaya O N . delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646 |
[13] |
Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B . Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010,184:799-812.
doi: 10.1534/genetics.109.110304 |
[14] |
Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, de Leon N, Kaeppler S M . Genome-wide atlas of transcription during maize development. Plant J, 2011,66:553-563.
doi: 10.1111/j.1365-313X.2011.04527.x pmid: 21299659 |
[15] |
Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P . Quality Control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13:7-14.
doi: 10.4137/CIN.S14022 pmid: 4214596 |
[16] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L . Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016,11:1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171 |
[17] | 魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48:2205-2215. |
Wei K, Zhang T T, Ma L . Construction and functional analysis of gene co-expression network modules. Acta Veter Zootech Sin, 2017,48:2205-2215 (in Chinese with English abstract). | |
[18] |
林行众, 张忠华, 杨清, 黄三文 . 黄瓜共表达基因模块的识别及其特点分析. 农业生物技术学报, 2017,23:1121-1130.
doi: 10.3969/j.issn.1674-7968.2015.09.001 |
Lin X Z, Zhang Z H, Yang Q, Huang S W . Identification and characterization analysis of co-expression gene modules in cucumber (Cucumis sativus L.). J Agric Biotechnol, 2017,23:1121-1130 (in Chinese with English abstract).
doi: 10.3969/j.issn.1674-7968.2015.09.001 |
|
[19] |
Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res, 2005,33:W741-W748.
doi: 10.1093/nar/gki475 pmid: 15980575 |
[20] |
Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008 |
[21] |
Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N . A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013,161:1830-1843.
doi: 10.1104/pp.112.213231 pmid: 23388120 |
[22] |
Du Z, Zhou X, Ling Y, Zhang Z H, Su Z . agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res, 2010,38:64-70
doi: 10.1093/nar/gkq310 pmid: 20435677 |
[23] |
Dong Z S, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M . A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012,7:e43450.
doi: 10.1371/journal.pone.0043450 pmid: 3422250 |
[24] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
doi: 10.1101/gr.1239303 |
[25] |
Mascheretti I, Turner K, Brivio R S, Hand A, Colasanti J, Rossi V . Florigen-Encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol, 2015,168:1351-1363.
doi: 10.1104/pp.15.00535 pmid: 26084920 |
[26] |
Khan S, Rowe S C, Harmon F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol, 2010,10:126.
doi: 10.1186/1471-2229-10-126 pmid: 3095283 |
[27] |
Sheehan M J, Kennedy L M, Costich D E, Brutnell T P . Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007,49:338-353.
doi: 10.1111/j.1365-313X.2006.02962.x pmid: 17181778 |
[28] |
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286.
doi: 10.1038/90135 pmid: 11431702 |
[29] |
Larsson S J, Lipka A E, Buckler E S . Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet, 2013,9:e1003246.
doi: 10.1371/journal.pgen.1003246 pmid: 23437002 |
[30] |
Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[31] | Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y . Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep, 2011,30:1261-1272. |
[32] |
Miller T A, Muslin E H, Dorweiler J E . A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008,227:1377-1388.
doi: 10.1007/s00425-008-0709-1 pmid: 18301915 |
[33] |
Sheehan M J, Farmer P R, Brutnell T P . Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405
doi: 10.1534/genetics.103.026096 pmid: 15280251 |
[34] |
Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N . Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010,5:e12887.
doi: 10.1371/journal.pone.0012887 pmid: 20886102 |
[35] |
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185.
doi: 10.1534/genetics.104.032375 pmid: 15611184 |
[36] |
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
doi: 10.1080/10543400903572753 pmid: 20309759 |
[37] |
Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
doi: 10.1016/j.pbi.2007.01.003 pmid: 17291822 |
[38] |
Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A . Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006,172:2449-2463.
doi: 10.1534/genetics.105.048603 pmid: 16415370 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
|