作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1448-1455.doi: 10.3724/SP.J.1006.2020.04020
付虹雨1(), 崔国贤1,2,*(), 李绪孟2,*(), 佘玮1, 崔丹丹1, 赵亮1, 苏小惠1, 王继龙1, 曹晓兰1, 刘婕仪1, 刘皖慧1, 王昕惠1
FU Hong-Yu1(), CUI Guo-Xian1,2,*(), LI Xu-Meng2,*(), SHE Wei1, CUI Dan-Dan1, ZHAO Liang1, SU Xiao-Hui1, WANG Ji-Long1, CAO Xiao-Lan1, LIU Jie-Yi1, LIU Wan-Hui1, WANG Xin-Hui1
摘要:
本研究旨在探索一种利用无人机-RGB系统提取的苎麻株高和可见光图像光谱信息估测产量的新方法。试验于2019年在湖南农业大学耘园苎麻基地进行, 利用无人机搭载高清数码相机获取二季苎麻苗期和成熟期的图像。首先利用Pix4D mapper生成苎麻冠层2个生育期的数字表面模型和高清数码正射图像; 然后基于数字表面模型采用“差分法”计算试验小区的平均株高(DSM-based H); 基于正射图像提取试验小区RGB通道均值, 进而计算遥感图像数码变量和植被指数, 分析苎麻种质间的图像光谱表型性状和产量株高比性状的差异性与多样性; 最后采用逐步回归方法建立苎麻产量预测模型, 并对各项产量解释因子进行相关性分析。结果表明: (1)基于无人机-RGB系统遥感株高与实测株高显著相关(r=0.90), 修正遥感株高的均方根误差为0.04 m。(2)苎麻产量与株高信息存在极显著相关性(r=0.91), 而与图像光谱表型相关性不明显。(3)融合遥感图像株高和种质特征差异构建的苎麻产量估测模型精度较高, R2=0.85, RMSE=0.71。因此, 基于无人机遥感图像的苎麻产量估测是可行的, 这对苎麻种质特征评价和产量估测具有重要的意义。
[1] | Becker-Reshef I, Vermote E, Lindeman M, Justice C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens Environ, 2010,114:1312-1323. |
[2] | Michael S, Antje G, Franziska G, Michael P. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens, 2016,8:706. |
[3] | Zhang J, Yang C H, Song H B, Zhang G Z. Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification. Remote Sens, 2016,8:257. |
[4] | 李明, 黄愉淇, 李绪孟, 彭冬星, 谢景鑫. 基于无人机遥感图像的水稻种植信息提取. 农业工程学报, 2018,34(4):108-111. |
Li M, Huang Y Q, Li X M, Peng D X, Xie J X. Extraction of rice planting information based on remote sensing image from UAV. Trans CSAE, 2018,34(4):108-111 (in Chinese with English abstract). | |
[5] | Juliane B, Andreas B, Georg B. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogr Fernerk Geoinf, 2013,6:551-562. |
[6] | 杨琦, 叶豪, 黄凯, 查元源, 史良胜. 利用无人机图像构建作物表面模型估测甘蔗LAI. 农业工程学报, 2017,33(8):112-119. |
Yang Q, Ye H, Huang K, Zha Y Y, Shi L S. Estimation of leaf area index of sugarcane using crop surface model based on UAV image. Trans CSAE, 2017,33(8):112-119 (in Chinese with English abstract). | |
[7] | Malambo L, Popescu S C, Murray S C. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int J Appl Earth Observ Geoinf, 2018,64:31-42. |
[8] | Hu P C, Chapman S, Chapman S C, Wang X M, Andries P, Duan T, David J, Guo Y, Zheng B Y. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: example for sorghum breeding. Eur J Agron, 2018,95:24-32. |
[9] | Juliane B, Andreas B, Simon B, Janis B, Silas E, Georg B. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens, 2014,6:10395-10412. |
[10] | Juliane B, Andreas B, Georg B. Introducing a low-cost mini-UAV for thermal-and multispectral-imaging. Remote Sens Spatial Inf Sci, 2012, XXXIX-B1:345-349. |
[11] | Gašparović M, Seletković A, Alen B, Ivan B. The evaluation of Photogrammetry-based DSM from low-cost UAV by lidar-based DSM. South-East Eur For, 2017,8:117-125. |
[12] | 田明璐, 班松涛, 常庆瑞, 罗丹, 王力, 王烁. 基于低空无人机成像光谱仪图像估算棉花叶面积指数. 农业工程学报, 2016,32(21):102-108. |
Tian M L, Ban S T, Chang Q R, Luo D, Wang L, Wang S. Use of hyperspectral images from UAV-based imaging spectrora diometer to estimate cotton leaf area index. Trans CSAE, 2016,32(21):102-108 (in Chinese with English abstract). | |
[13] | 陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 农业遥感研究应用进展与展望. 遥感学报, 2016,20:748-767. |
Chen Z X, Ren J G, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M, Hasituya. Progress and perspectives on agricultural remote sensing research and applications. J Remote Sens, 2016,20:748-767 (in Chinese with English abstract). | |
[14] | 李井会, 朱丽丽, 宋述尧. 数字图像技术在马铃薯氮素营养诊断中的应用. 安徽农业科学, 2012,40:3303-3305. |
Li J H, Zhu L L, Song S Y. Application of digital image technology in diagnosis of potato nitrogen nutrition. J Anhui Agric Sci, 2012,40:3303-3305 (in Chinese with English abstract). | |
[15] | Hunt J E R, Cavigelli M, Daughtry C S T, James E, Charles L. Walthall. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agric, 2005,6:359-378. |
[16] | 李长春, 牛庆林, 杨贵军, 冯海宽, 刘建刚, 王艳杰. 基于无人机数码图像的大豆育种材料叶面积指数估测. 农业机械学报, 2017,48(8):147-158. |
Li C C, Niu Q L, Yang G J, Feng H K, Liu J G, Wang Y J. Estimation of leaf area index of soybean breeding materials based on UAV digital images. Trans CSAM, 2017,48(8):147-158 (in Chinese with English abstract). | |
[17] | Anjin C, Jinha J, Murilo M, Landivar J. Crop height monitoring with digital imagery from unmanned aerial system. Comp Electron Agric, 2017,141:232-237. |
[18] | 牛庆林, 冯海宽, 杨贵军. 基于无人机数码图像的玉米育种材料株高和LAI监测. 农业工程学报, 2018,34(5):73-81. |
Niu Q L, Feng H K, Yang G J. Plant height and LAI monitoring of maize breeding materials based on UAV digital image. Trans CSAE, 2018,34(5):73-81 (in Chinese with English abstract). | |
[19] |
Watanabe K, Guo W, Arai K. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front Plant Sci, 2017,8:421.
doi: 10.3389/fpls.2017.00421 pmid: 28400784 |
[20] |
Juliane B, Kang Y, Helge A, Andreas B, Simon B, Janis B, Martin L, Georg B. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Observ Geoinf, 2015,39:79-87.
doi: 10.1016/j.jag.2015.02.012 |
[21] | Geipel J, Link J, Claupein W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens, 2014,6:10335. |
[22] |
Li W, Niu Z, Chen H Y, Dong L, Wu M Q, Zhao W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol Indicators, 2016,67:637-648.
doi: 10.1016/j.ecolind.2016.03.036 |
[23] | Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int, 2001,16:65-70. |
[24] | Woebbecke D, Meyer G, Bargen K V, Mortensen D. Color indices for weed identification under various soil, residue, and lighting conditions. Am Soc Agric Biol Eng, 1995,38:259-269. |
[25] | Shannon C E, Weaver W. The Mathem Atical Theory of Communication. Urbana: University of Illinoispress, 1994. pp 3-14. |
[26] |
Jay S, Rabatel G, Hadoux X, Moura D, Gorretta N. In-field crop row phenotyping from 3D modeling performed using structure from motion. Computers Electron Agric, 2015,110:70-77
doi: 10.1016/j.compag.2014.09.021 |
[27] | 马稚昱, 清水浩, 辜松. 基于机器视觉的菊花生长自动无损监测技术. 农业工程学报, 2010,26(9):213-219. |
Ma Z Y, Qing S H, Gu S. Non-destructive measurement system for plant growth information based on machine vision. Trans CSAE, 2010,26(9):203-209 (in Chinese with English abstract). | |
[28] |
Xu W, Daljit S, Sandeep M, Geoffrey M, Jesse P. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods, 2018,14:53.
doi: 10.1186/s13007-018-0324-5 pmid: 29997682 |
[29] |
Holman F, Riche A B, Michalski A, Castle M, Wooster M, Hawkesford M. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens, 2016,8:1031.
doi: 10.3390/rs8121031 |
[30] |
Tonkin T N, Midgley N G. Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens, 2016,8:786.
doi: 10.3390/rs8090786 |
[31] |
Munoz J D, Finley A O, Gehl R, Kravchenko S. Nonlinear hierarchical models for predicting cover crop biomass using normalized difference vegetation index. Remote Sens Environ, 2010,114:2833-2840.
doi: 10.1016/j.rse.2010.06.011 |
[32] |
Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications. Comp Electron Agric, 2008,63:282-293.
doi: 10.1016/j.compag.2008.03.009 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[3] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[8] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[13] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
|