欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 138-148.doi: 10.3724/SP.J.1006.2021.04065

• 耕作栽培·生理生化 • 上一篇    下一篇

旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响

张绪成*(), 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁   

  1. 甘肃省农业科学院旱地农业研究所 / 甘肃省旱作区水资源高效利用重点实验室, 甘肃兰州 730070
  • 收稿日期:2020-03-12 接受日期:2020-07-02 出版日期:2021-01-12 网络出版日期:2020-08-18
  • 通讯作者: 张绪成
  • 基金资助:
    国家重点研发计划项目(2018YFD020080105);国家自然科学基金项目(31960398);国家自然科学基金项目(31560355)

Effects of tillage depth on soil hydrological characteristics and potato yield on northwest Loess Plateau

ZHANG Xu-Cheng*(), MA Yi-Fan, YU Xian-Feng, HOU Hui-Zhi, WANG Hong-Li, FANG Yan-Jie, ZHANG Guo-Ping, LEI Kang-Ning   

  1. Institute of Dry Land Farming, Gansu Academy of Agricultural Sciences / Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
  • Received:2020-03-12 Accepted:2020-07-02 Published:2021-01-12 Published online:2020-08-18
  • Contact: ZHANG Xu-Cheng
  • Supported by:
    National Key Research and Development Program of China(2018YFD020080105);National Natural Science Foundation of China(31960398);National Natural Science Foundation of China(31560355)

摘要:

深耕对打破犁底层、优化土壤水分特性有积极作用, 但对旱作农田旋耕深度的土壤水分效应及其对马铃薯水分耗散过程和产量的影响缺乏研究分析。本研究设15 (TT)、40 (VRT)、60 cm (VRT6) 3个旋耕深度, 测定土壤容重和水分特性、马铃薯叶片SPAD值、叶面积指数(LAI)和产量等, 研究旋耕深度对马铃薯水分利用和产量的影响。结果表明, 与VRT和TT相比, VRT6分别在40~60 cm和0~60 cm土层降低土壤容重, 提高饱和含水量、毛管含水量和田间持水量; VRT6显著提高了马铃薯现蕾前的耗水量, 导致盛花期的土壤贮水量在2016年较VRT和TT下降了22.3 mm、49.0 mm, 2017年下降了43.9 mm、56.6 mm; VRT6显著提高2017年花后耗水, 分别较VRT和TT增加了42.2 mm和38.3 mm。旺盛的花前耗水促进了地上部发育, VRT6的LAI在全生育期高于TT, 在现蕾期至收获期高于VRT, 并使SPAD值在2017年的块茎膨大期显著高于VRT和TT, 呈现明显的地上部旺长特征。基于以上原因, VRT6的块茎产量虽然高于TT, 但在2017年显著低于VRT, 而且水分利用效率(WUE)较VRT和TT下降了61.2%~67.5%和41.0%~53.5%。因此, 在半干旱旱作区马铃薯种植的立式深旋耕作的适宜深度是40 cm, 可在优化土壤水分特性和耗水过程的基础上, 有效抵御季节性干旱胁迫, 显著提高产量和水分利用效率。

关键词: 旋耕深度, 土壤水分特性, 阶段耗水量, 产量, 水分利用效率, 马铃薯

Abstract:

The subsoiling can break the plough pan and optimize soil hydrological characteristics. However, the study on the effects of tillage depths on soil water characteristics, potato water consumption and yield, is insufficient. The field experiment was conducted with three tillage depths of 15 cm (TT), 40 cm (VRT), and 60 cm (VRT6), to investigate the effect of tillage depths on the yield and water utilization of potato in semiarid rain-fed area in 2016 and 2017 on northwest Loess Plateau. The parameters of soil bulk density, soil hydrological properties, potato SPAD (soil and plant analyzer development) value, leaf area index (LAI), and tuber yield were measured. The soil bulk density, and increased saturation moisture, capillary moisture and field water capacity of VRT6 treatment compared with VRT and TT were decreased in 40-60 cm and 0-60 cm profile, respectively. Water consumption of VRT6 treatment was significantly increased in pre-squaring stage, resulting in the decrement of soil water storage in 0-100 cm profile by 22.3 mm and 49.0 mm in 2016, and 43.9 mm and 56.6 mm in 2017. Water consumption in pre-squaring stage of VRT6 was significantly increased by 42.2 mm and 38.3 mm compared with VRT and TT treatment in 2017, respectively. Based on the excessive water consumption in pre-flowering period, the LAI of VRT6 was significantly higher than TT in whole growth period, than VRT in post-squaring period, and the SPAD value was higher than VRT in expanding stage in 2017, which indicated that the vigorous growth was subsistent in VRT6 treatment. The tuber yield of VRT6 were significantly higher than TT, but it significantly decreased in 2017 compared to VRT, and the water use efficiency (WUE) of VRT6 were significantly decreased by 61.2%-67.5% and 41.0%-53.5%, as compared with VRT and TT. Consequently, the suitable tillage depth for potato cultivation was 40 cm in semiarid area, which could optimize the soil hydrological properties and potato water consuming process, and relieved the drought stress efficiently, resulting in significantly higher tuber yield and WUE.

Key words: tillage depths, soil hydrological properties, periodical water consumption, tuber yield, water use efficiency, potato

图1

2016-2017试验区降水分布和平均气温变化"

图2

马铃薯全膜覆盖垄上微沟种植技术示意图"

图3

不同旋耕深度对土壤容重的影响 TT: 传统旋耕15 cm; VRT: 立式深旋松耕40 cm; VRT6: 立式深旋松耕60 cm。在同一土层标记不同小写字母表示处理间在0.05水平差异显著。"

图4

不同旋耕深度对土壤饱和含水量、毛管含水量和田间持水量的影响 图a、b、c和e、d、f分别为2016年和2017年的土壤饱和含水量、毛管含水量和田间持水量。在同一土层标记不同小写字母表示处理间在0.05水平差异显著。处理同图3。"

图5

不同旋耕深度对土壤剖面贮水量的影响 图a, b, c, d和e, f, g, h分别为2016年和2017年的播前、现蕾期、盛花期和收获期。处理同图3。"

图6

不同旋耕深度对马铃薯阶段耗水量的影响 图柱为阶段耗水量, 图线为阶段降水量。标以不同小写字母表示处理间在0.05水平差异显著。处理同图3。"

图7

不同旋耕深度对马铃薯叶片SPAD值和叶面积指数的影响 标以不同小写字母表示处理间在0.05水平差异显著。处理同图3。"

表1

不同旋耕深度对马铃薯产量、耗水量和水分利用效率的影响"

年份
Year
处理
Treatment
产量
Yield (kg hm-2)
耗水量
ET (mm)
水分利用效率
WUE (kg hm-2 mm-1)
2016 TT 22,253.3 b 240.1 c 92.6 b
VRT 32,897.3 a 297.8 b 110.6 a
VRT6 33,363.0 a 371.4 a 36.0 c
2017 TT 30,388.9 c 309.0 c 98.6 b
VRT 42,833.3 a 344.0 b 124.9 a
VRT6 36,257.7 b 410.1 a 58.1 c
[1] 朱显谟. 试论黄土高原的生态环境与“土壤水库”—重塑黄土地的理论依据. 第四纪研究, 2000,20:514-520.
Zhu X M. Environment in Loess Plateau and “pedogenic reservoir”. Quatern Sci, 2000,20:514-520 (in Chinese with English abstract).
[2] 翟振, 李玉义, 逄焕成, 王婧, 张莉, 董国豪, 郭建军, 郭智慧. 黄淮海北部农田犁底层现状及其特征. 中国农业科学, 2016,49:2322-2332.
Zhai Z, Li Y Y, Pang H C, Wang J, Zhang L, Dong G H, Guo J J, Guo Z H. Study on present situation and characteristics of plow pan in the northern region of Huang Huai Hai plain. Sci Agric Sin, 2016,49:2322-2332 (in Chinese with English abstract).
[3] 王慧杰, 郝建平, 冯瑞云, 南洋, 杨淑巧, 南建福. 微孔深松耕降低土壤紧实度提高棉花产量与种籽品质. 农业工程学报, 2015,31(8):7-14.
Wang H J, Hao J P, Feng R Y, Nan Y, Yang S Q, Nan J F. Microhole subsoiling decreasing soil compaction, and improving yield and seed quality of cotton. Trans CSAE, 2015,31(8):7-14 (in Chinese with English abstract).
[4] 姬相云, 王莉萍, 申春晓. 连年旋耕整地对旱地小麦生长发育及产量影响的调查分析. 种业导刊, 2010, (8):15-16.
Ji X Y, Wang L P, Shen C X. The investigation and analysis for the effect of continuously rotary tillage on wheat development and yield under rain-fed. J Seed Ind Guide, 2010, (8):15-16 (in Chinese with English abstract).
[5] 花伟东, 郭亚芬, 张忠学. 坡耕地局部打破犁底层对水分入渗的影响. 水土保持学报, 2008,22(5):213-216.
Hua W D, Guo Y F, Zhang Z X. Influence of plough pan on broke partially slope farmland to moisture content infiltration. J Soil Water Conserv, 2008,22(5):213-216. (in Chinese with English abstract).
[6] 谢军红, 张仁陟, 李玲玲, 罗珠珠, 蔡立群, 柴强. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响. 中国生态农业学报, 2015,23:1384-1393.
Xie J H, Zhang R Z, Li L L, Luo Z Z, Cai L Q, Chai Q. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chin J Eco-Agric, 2015,23:1384-1393 (in Chinese with English abstract).
[7] Huang G B, Zhang R Z, Li G D, Li L L, Chan K Y, Heenan D P, Chen W, Unkovich M J, Robertson M J, Cullis B R, Bellotti W D. Productivity and sustainability of a spring wheat-field pea rotation in a semiarid environment under conventional and conservation tillage systems. Field Crops Res, 2008,107:43-55.
[8] 石磊, 许明祥, 董丽茹, 师晨迪, 邱宇洁. 陕西省农田土壤物理障碍评价. 干旱地区农业研究, 2016,34(3):46-53.
Shi L, Xu M X, Dong L R, Shi C D, Qiu Y J. Evaluation of soil physical obstacles on cropland in Shaanxi Province. Agric Res Arid Areas, 2016,34(3):46-53 (in Chinese with English abstract).
[9] 田慎重, 王瑜, 宁堂原, 董晓霞, 董亮, 郑东峰, 郭洪海. 转变耕作方式对长期旋免耕农田土壤有机碳库的影响. 农业工程学报, 2016,32(17):98-105.
Tian S Z, Wang Y, Ning T Y, Dong X X, Dong L, Zheng D F, Guo H H. Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage. Trans CSAE, 2016,32(17):98-105 (in Chinese with English abstract).
[10] 王红光, 于振文, 张永丽, 石玉, 王东. 耕作方式对旱地小麦耗水特性和干物质积累的影响. 作物学报, 2012,38:675-682.
Wang H G, Yu Z W, Zhang Y L, Shi Y, Wang D. Effects of tillage regimes on water consumption and dry matter accumulation in dryland wheat. Acta Agron Sin, 2012,38:675-682 (in Chinese with English abstract).
[11] Tian S Z, Wang Y, Ning T Y, Li N, Zhao H X, Wang B W, Li Z J, Chi S Y. Continued no-till and subsoiling improved soil organic carbon and soil aggregation levels. Agron J, 2014,106:212-218.
[12] 刘丹, 张霞, 李军, 王旭东. 渭北旱塬农田不同耕作模式对土壤性状及玉米产量和水分利用效率的影响. 应用生态学报, 2018,29:573-582.
Liu D, Zhang X, Li J, Wang X D. Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China. Chin J Appl Ecol, 2018,29:573-582 (in Chinese with English abstract).
[13] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡. 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F. Effects of mini-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed semiarid region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[14] 人民网-甘肃频道. 2017年马铃薯播种面积达到1000万亩. (2018-05-29)[2017-09-28] http://gs.people.com.cn/n2/2017/0928/c183348-30788332.html.
People. CN-Gansu. The potato cultivation area reaches to 10000 thousands mu in 2017. (2018-05-29)[2017-09-28] http://gs.people.com.cn/n2/2017/0928/c183348-30788332.html. (in Chinese).
[15] 农业部. 2015年全国各地蔬菜、西瓜、甜瓜、草莓、马铃薯播种面积和产量. 中国蔬菜, 2017,1(1):18.
Ministry of Agriculture. The nationwide plant area and yield of vegetable, watermelon, melon, strawberry, potato in 2015. China Veget, 2017,1(1):18 (in Chinese).
[16] 吕薇, 李军, 岳志芳, 陈宁宁, 王淑兰. 轮耕对渭北旱塬麦田土壤有机质和全氮含量的影响. 中国农业科学, 2015,48:3186-3200.
Lyu W, Li J, Yue Z F, Chen N N, Wang S L. Effects of rotational tillage on soil organic matter and soil total nitrogen contents of continuous cropping wheat field in Weibei highland. Sci Agric Sin, 2015,48:3186-3200. (in Chinese with English abstract).
[17] 郑成岩, 崔世明, 王东, 于振文, 张永丽, 石玉. 土壤耕作方式对小麦干物质生产和水分利用效率的影响. 作物学报, 2011,37:1432-1440.
Zheng C Y, Cui S M, Wang D, Yu Z W, Zhang Y L, Shi Y. Effects of soil tillage practice on dry matter production and water use efficiency in wheat. Acta Agron Sin, 2011,37:1432-1440 (in Chinese with English abstract).
[18] 韦本辉, 甘秀芹, 申章佑, 宁秀呈, 陆柳英, 韦广泼, 李艳英, 胡泊, 刘斌, 吴延勇. 粉垄栽培甘蔗试验增产效果. 中国农业科学, 2011,44:4544-4550.
Wei B H, Gan X Q, Shen Z Y, Ning X C, Lu L Y, Wei G B, Li Y Y, Hu B, Liu B, Wu Y Y. Yield increase of smash-ridging cultivation of sugarcane. Sci Agric Sin, 2011,44:4544-4550 (in Chinese with English abstract).
[19] 韦本辉, 甘秀芹, 申章佑, 宁秀呈, 韦广泼, 陆柳英, 胡泊, 刘斌, 李艳英, 吴延勇. 粉垄栽培木薯增产效果及理论探讨. 中国农学通报, 2011,27(21):78-81.
Wei B H, Gan X Q, Shen Z Y, Ning X C, Wei G P, Lu L Y, Hu B, Liu B, Li Y Y, Wu Y Y. Production increasing and discussion in theory of smash-ridging cultivate cassava. Chin Agric Sci Bull, 2011,27(21):78-81 (in Chinese with English abstract).
[20] 李华, 逄焕成, 任天志, 李轶冰, 汪仁, 牛世伟, 安景文. 深旋松耕作法对东北棕壤物理性状及春玉米生长的影响. 中国农业科学, 2013,46:647-656.
Li H, Pang H C, Ren T Z, Li Y B, Wang R, Niu S W, An J W. Effects of deep rotary-subsoiling tillage method on brown physical properties and maize growth in northeast of China. Sci Agric Sin, 2013,46:647-656 (in Chinese with English abstract).
[21] Zhai L C, Xu P, Zhang Z B, Li S K, Xie R Z, Zhai L F, Wei B H. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai plain of China. Soil Tillage Res, 2017,170:167-174.
[22] 李轶冰, 逄焕成, 杨雪, 李玉义, 李华, 任天志, 董国豪, 郭良海. 粉垄耕作对黄淮海北部土壤水分及其利用效率的影响. 生态学报, 2013,33:7478-7486.
Li Y B, Pang H C, Yang X, Li Y Y, Li H, Ren T Z, Dong G H, Guo L H. Effects of deep vertically rotary tillage on soil water and water use efficiency in northern China’s Huang-Huai-Hai Region. Acta Ecol Sin, 2013,33:7478-7486 (in Chinese with English abstract).
[23] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响. 应用生态学报, 2018,29:3293-3301.
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J. Effects of vertically rotary sub-soiling tillage on water utilization and yield of potato in semiarid area of northwest China. Chin J Appl Ecol, 2018,29:3293-3301 (in Chinese with English abstract).
[24] Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J. Effects of vertical rotary subsoiling with plastic mulching on soil water availability and potato yield on a semiarid Loess plateau, China. Soil Tillage Res, 2020,199:104591.
[25] 冯晔, 张玉霞, 王春雷, 张建华, 包额尔敦嘎, 郑威, 纪晓波. 不同深松深度对玉米根系活性及产量的影响. 内蒙古民族大学学报(自然科学版), 2013,28(2):196-199.
Feng Y, Zhang Y X, Wang C L, Zhang J H, Bao E R D G, Zheng W, Ji X B. A influence of different subsoiling depth on corn root activity and output. J Inner Mongo Univ (Nat Sci Edn), 2013,28(2):196-199 (in Chinese with English abstract).
[26] 高建胜, 董国豪, 郭建军, 郭良海, 郭智慧, 崔慧妮. 耕层厚度对冬小麦农艺性状及产量的影响. 山东农业科学, 2018,50(8):54-57.
Gao J S, Dong G H, Guo J J, Guo L H, Guo Z H, Cui H N. Effects of topsoil thickness on agronomic trait and yield of winter wheat. Shandong Agric Sci, 2018,50(8):54-57 (in Chinese with English abstract).
[27] 张莉, 翟振, 逄博, 李玉义, 王婧, 逄焕成, 韦本辉, 王庆伟, 綦少伟. 深旋松耕改善耕层结构促进马铃薯增产. 中国土壤与肥料, 2017, (4):17-23.
Zhang L, Zhai Z, Pang B, Li Y Y, Wang J, Pang H C, Wei B H, Wang Q W, Qi S W. Deep vertically rotary tillage improves soil structure and tuber yield of potato. Soil Fert Sci China, 2017, (4):17-23 (in Chinese with English abstract).
[28] 张福锁, 范明生. 主要粮食作物高产栽培与资源高效利用的基础研究. 北京: 中国农业出版社, 2013. pp 572-578.
Zhang F S, Fan M S. The Theoretic Research on High Yield and Resource Utilization Cultivation of Main Food Crops. Beijing: China Agriculture Press, 2013. pp 572-578(in Chinese).
[29] 张春娟, 冯乃杰, 李建英, 郑殿峰. 植物生长物质对马铃薯叶片同化物及产量品质的影响. 中国马铃薯, 2009,23:325-328.
Zhang C J, Feng N J, Li J Y, Zheng D F. Effects of plant growth substances on the metabolism assimilation of leaves, yield and quality in potato. Chin Potato J, 2009,23:325-328 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[12] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!