欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 587-598.doi: 10.3724/SP.J.1006.2021.04115

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状

周新桐1,2(), 郭青青1,2,*(), 陈雪1,2, 李加纳1,2, 王瑞1,2,*()   

  1. 1西南大学现代农业科学院, 重庆400715
    2西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心, 重庆400715
  • 收稿日期:2020-05-30 接受日期:2020-09-13 出版日期:2021-04-12 网络出版日期:2020-12-01
  • 通讯作者: 郭青青,王瑞
  • 作者简介:周新桐, E-mail: wjzxt22@163.com;|郭青青, E-mail: 1833266719@qq.com
  • 基金资助:
    西南大学校创项目(106352020478)

Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L.

ZHOU Xin-Tong1,2(), GUO Qing-Qing1,2,*(), CHEN Xue1,2, LI Jia-Na1,2, WANG Rui1,2,*()   

  1. 1Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    2College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
  • Received:2020-05-30 Accepted:2020-09-13 Published:2021-04-12 Published online:2020-12-01
  • Contact: GUO Qing-Qing,WANG Rui
  • Supported by:
    Innovation Project of Southwest University Students(106352020478)

摘要:

甘蓝型油菜花瓣颜色是重要的观赏性状, 花瓣颜色的选育和改良已成为材料创制的主要研究方向。目前对甘蓝型油菜粉色花性状定位研究未见报道。本研究以甘蓝型油菜纯系黄花62和甘蓝型油菜纯系粉花77为亲本构建双单倍体(doubled haploid, DH)群体。利用简化基因组测序技术(genotyping-by-sequencing, GBS)筛选出3253个单核苷酸多态性(single nucleotide polymorphism, SNP)标记, 构建了全长1766.06 cM甘蓝型油菜连锁图谱, 标记间平均遗传距离为0.54 cM; 使用WinQTL Cartographer复合区间作图方法对粉色花性状进行数量性状座位(quantitative trait locus, QTL)定位, 检测到位于A07和C03染色体上各1个QTL; 将定位区间内基因与甘蓝和白菜同源基因进行线性比对, 在这些区间中找到了一些存在于3个物种的同源基因; 对粉色花定位区间内基因进行可变剪切分析发现, 2个花色相关基因BnaA07g15980DBnaA07g17500D在亲本粉色花瓣中发生内含子保留可变剪切。上述研究结果为甘蓝型油菜粉色花相关基因精细定位和分子连锁标记开发提供了更多线索。

关键词: 甘蓝型油菜, 粉色花性状, 遗传连锁图谱, QTL定位

Abstract:

Petal color is an important ornamental trait in B. napus, and the breeding and improvement of petal color have become the main goal in breeding and genetic research. To date, the research about interval location of pink petal trait in B. napus is very less yet. In this study, the genetic basis of petal phenotype was examined in the 62 (yellow petal) and 77 (pink petal) parents as well as 114 individuals comprising the doubled haploid (DH) mapping population. This DH population was examined using genotyping by sequencing (GBS) with 6065 high-density polymorphism single nucleotide polymorphism (SNP) markers to construct a genetic linkage map comprised of 3253 polymorphic markers. The genetic map spanned 1766.06 cM, with an average distance of 0.54 cM between markers. The complete interval mapping method identified two quantitative trait loci (QTL) for petal color located on chromosomes A07 and C03, respectively. Synteny analysis showed that some homologous genes in the interval of B. napus were located in Brassica rapa and Brassica oleracea. Also, eight genes related to flower color were analyzed between inbred line 77 and inbred line 62, the splice junctions of BnaA07g15980D and BnaA07g17500D were belong to intron retention type in pink petal of 77 parent. This study lays a foundation for further research on fine mapping of pink petal trait and molecular marker-assisted selection in Brassica napus L.

Key words: Brassica napus L., pink petal trait, genetic linkage map, QTL mapping

表1

遗传连锁群信息统计"

连锁群
Linkage groups
标记数量
Number of markers
遗传距离
Genetic distance
(cM)
平均遗传距离
Average genetic distance
(cM)
标记间最大间隔
Maximum spacing between markers (cM)
lg1 69 93.50 1.36 15.24
lg2 217 97.00 0.45 18.52
lg3 146 150.84 1.03 9.17
lg4 153 99.61 0.65 6.43
lg5 220 141.07 0.64 6.66
lg6 256 101.53 0.40 5.51
lg7 160 131.66 0.82 18.37
lg8 275 133.58 0.49 6.73
lg9 222 77.51 0.35 10.69
lg10 78 84.29 1.08 13.89
lg11 63 76.21 1.21 12.50
lg12 349 42.19 0.12 5.53
lg13 214 88.18 0.41 4.97
lg14 410 118.09 0.29 11.33
lg15 72 57.28 0.80 16.00
lg16 147 97.54 0.66 9.47
lg17 103 102.42 0.99 6.44
lg18 66 53.73 0.81 16.87
lg19
总计Total
33
3253
19.83
1766.06
0.60
0.54
9.65
18.52

图1

连锁群标记分布图 X轴表示连锁群; Y轴表示遗传距离(单位: cM); 蓝色为有效SNP标记。"

图2

甘蓝型油菜亲本花瓣表型观察 A1与A2: 母本62; B1与B2: 父本77。"

图3

甘蓝型油菜DH群体花色表型"

表2

甘蓝型油菜花色性状统计参数"

性状
Trait
平均数
Average
中位数
Median
标准偏差
Standard deviation
最小值
Minimum
最大值
Maximum
范围
Range
四分位距
Interquartile range
偏斜度
Skewness
峰度
Kurtosis
显著性
Significance
花色PC 24.47 22.89 11.28 6.21 53.04 46.83 12.78 0.85 0.09 0.00

图4

花色性状分布密度直方图 X轴代表花色表型组中值, Y轴代表分布密度。"

图5

WinQTL复合区间方法确定花色QTL连锁群位置 图A中, X轴表示19条染色体, Y轴分别表示LOD值和加性效应a (H1); 横线表示LOD阈值线。图B、图C分别表示在7号染色体和13号染色体检测到的一个花色QTL位点; X轴表示对应染色体上的遗传距离, Y轴分别表示LOD值和加性效应a (H1); 横线表示LOD阈值线。"

表3

WinQTL复合区间作图花色QTL结果"

QTL LOD峰值
LOD peak
位置
Position (cM)
左端标记
Left marker
右端标记
Right marker
99%置信
区间范围
99% CI (cM)
加性效应
Additive effect
贡献率
R2 (%)
区间基因数量
Number of genes
qFC-chr7-1 6.62 23.8 mk2056 mk2036 8.383-42.019 4.58 14.29 287
qFC-chr13-1 14.01 30.8 mk4000 mk3898 20.305-41.353 6.61 34.02 308

图6

甘蓝型油菜WinQTL复合区间花色QTLs物理区间与甘蓝、白菜同源基因共线性分析"

表4

甘蓝型油菜亲本花色定位区间内基因可变剪切类型"

方法
Method
亲本Parent 染色体
Chromosome
定位区间内基因总数
Total number of genes in location interval
发生可变剪切基因总数
Number of genes with
alternative splicing
可变剪切出现次数
Number of the alternative splicings
IR ES A3SS A5SS 总计
Total
WinQTL Cart 77 A07 287 26 26 2 5 0 33
62 A07 287 26 25 1 4 2 32
77 C03 308 14 10 0 5 1 16
62 C03 308 11 8 0 5 2 15

图7

两亲本花瓣中花色相关基因可变剪切视图 A: BnaA07g15980D在黄花亲本62花瓣中转录本剪切视图; B: BnaA07g15980D在粉花亲本77花瓣中转录本剪切视图; C: BnaA07g17500D在黄花亲本62花瓣花瓣中转录本剪切视图; D: BnaA07g17500D在粉花亲本77花瓣中转录本剪切视图。灰色五边形为外显子, 白色区域为内含子, 连线表示不同剪接方式。图片包含4个区域, 第1部分为注释文件基因模型, 第2部分是测序结果, 第3部分为测序结果与注释文件比较基因剪切模型(带有代表性的isoform同源蛋白异构体), 第4部分为测序文件中支持外显子reads数目。左下角、右下角数字为该基因的起始位点和终止位点。"

[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
doi: 10.7505/j.issn.1007-9084.2014.03.020
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[2] Chen B, Heneen W, Jonsson R. Independent inheritance of erucic acid content and flower colour in the C-genome of Brassica napus L. Plant Breed, 1988,100:147-149.
doi: 10.1111/pbr.1988.100.issue-2
[3] 戚存扣, 傅寿仲. 甘蓝型油菜白花性状的遗传. 中国油料作物学报, 1992,1(3):60-62.
Qi C K, Fu S Z. Genetic studies of white petals in Brassica napus L. Chin J Oil Crop Sci, 1992,1(3):60-62 (in Chinese with English abstract).
[4] 董育红, 田建华, 李殿荣. 甘蓝型油菜白花基因的RAPD标记. 西北农林科技大学学报, 2005,33(10):57-61.
Dong Y H, Tian J H, Li D R. RAPD markers linked to white-petal gene in Brassica napus L. J Northwest A&F Univ, 2005,33(10):57-61 (in Chinese with English abstract).
[5] 刘雪平, 涂金星, 刘志文, 陈宝元, 傅廷栋. 甘蓝型油菜遗传图谱的构建及芥酸含量的QTL分析. 作物学报, 2005,31:275-282.
Liu X P, Tu J X, Liu Z W, Chen B Y, Fu T D. Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. Acta Agron Sin, 2005,31:275-282 (in Chinese with English abstract).
[6] Huang Z, Ban Y Y, Bao R, Zhang X X, Xu A X, Ding J. Inheritance and gene mapping of the white flower in Brassica napus L. New Zealand J Crop Hortic Sci, 2014,42:111-117.
doi: 10.1080/01140671.2013.863211
[7] 黄镇, 许婷, 班元元, 刘欢, 范胜栩, 杨丽, 徐爱遐. 甘蓝型油菜白花性状的遗传及AFLP标记. 华北农学报, 2012,27(1):98-101.
doi: 10.3969/j.issn.1000-7091.2012.01.018
Huang Z, Xu T, Ban Y Y, Liu H, Fan S X, Yang L, Xu A X. Genetic studies of white petals and AFLP markers linked to white petal gene in Brassica napus L. Acta Agric Boreali-Sin, 2012,27(1):98-101 (in Chinese with English abstract).
[8] 张豹. 甘蓝型油菜导入系构建、重要农艺性状QTL分析和白花基因克隆. 华中农业大学博士学位论文, 湖北武汉, 2015.
Zhang B. Development of Chromosome Segment Substitution Lines for QTL Analysis of Important Agronomic Traits and Cloning the White-Flowered Gene in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[9] 赵君伟. 白菜型油菜花色遗传及花色基因精细定位. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Zhao J W. Genetic Analysis and Fine Mapping of the Flower Color Gene in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[10] 淡亚彬. 甘蓝型油菜桔红花色基因和心叶紫色基因的初步定位. 青海大学硕士学位论文, 青海西宁, 2016.
Dan Y B. Primary Mapping of the Orange Flower Gene and Central Leaf Color Gene in Brassica napus L. MS Thesis of Qinghai University, Xining, Qinghai, China, 2016 (in Chinese with English abstract).
[11] Yao Y M, Li K X, Liu H D, Duan R W, Guo S M, Xiao L, Du D Z. Whole-genome re-sequencing and fine mapping of an orange petal color gene ( Bnpe 1) in spring Brassica napus L. to a 151-kb region. Euphytica, 2017,213:165.
doi: 10.1007/s10681-017-1959-4
[12] Zhang N, Zhang H M, Ren Y J, Chen L, Zhang J, Zhang L G. Genetic analysis and gene mapping of the orange flower trait in Chinese cabbage ( Brassica rapa L.). Mol Breed, 2019,39:1-11.
doi: 10.1007/s11032-018-0907-x
[13] 丁戈, 陈伦林, 邹小云, 李书宇, 熊洁, 邹晓芬, 宋来强. 甘蓝型油菜桔黄花色基因的QTL-seq遗传分析及InDel分子标记开发. 分子植物育种, 2019,17:3983-3992.
Ding G, Chen L L, Zou X Y, Li S Y, Xiong J, Zou X F, Song L Q. QTL-seq genetic analysis and InDel marker development of orange petal colour gene in Brassica napus. Mol Plant Breed, 2019,17:3983-3992 (in Chinese with English abstract).
[14] 陈雪, 王瑞, 井付钰, 张胜森, 贾乐东, 段谋正, 吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证. 中国农业科学, 2020,53:1108-1117.
doi: 10.3864/j.issn.0578-1752.2020.06.003
Chen X, Wang R, Jing F Y, Zhang S S, Jia L D, Duan M Z, Wu Y. Location and linkage markers for candidate interval of the white petal gene in Brassica napus L. by Next Generation Sequencing. Sci Agric Sin, 2020,53:1108-1117 (in Chinese with English abstract).
[15] 王小柯, 江东, 孙珍珠. 利用GBS技术研究240份宽皮柑橘的系统演化. 中国农业科学, 2017,50:1666-1673.
doi: 10.3864/j.issn.0578-1752.2017.09.012
Wang X K, Jiang D, Sun Z Z. Study on phylogeny of 240 mandarin accessions with genotyping-by-sequencing technology. Sci Agric Sin, 2017,50:1666-1673 (in Chinese with English abstract).
[16] 蔡露, 杨欢, 王勇, 李廷轩, 陈光登. 利用GBS技术开发烟草SNP标记及遗传多样性分析. 中国烟草科学, 2018,39(5):17-24.
Cai L, Yang H, Wang Y, Li Y X, Chen G D. Analysis of genetic diversity of tobacco germplasm resources based on SNP markers via genotyping-by-sequencing technology. Chin Tob Sci, 2018,39(5):17-24 (in Chinese with English abstract).
[17] 刘作铭. 基于GBS测序的玉米苗期耐旱相关性状QTL定位. 四川农业大学硕士学位论文, 四川雅安, 2017.
Liu Z M. QTL Mapping of Maize Drought Tolerance Related Traits at Seeding Stage by Genotyping-by-Sequencing. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2017 (in Chinese with English abstract).
[18] Hai K Q, Ning W, Wen Q Q, Qing H X, Hong Z, Jian B S, Gen T Y, Qun H. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton ( Gossypium hirsutum L.). Euphytica, 2017,213:1-17.
doi: 10.1007/s10681-016-1788-x
[19] Zhong Z, Tian J W, Ying Z, Xin G L, Jian H. Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology. Tree Genet Genomes, 2016,12:76-80.
doi: 10.1007/s11295-016-1032-9
[20] Melo A T O, Bartaula R, Hale I. GBS-SNP-CROP: a reference- optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping- by-sequencing data. BMC Bioinf, 2016,17:29-33.
doi: 10.1186/s12859-016-0879-y
[21] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J, 1993,3:739-744.
doi: 10.1111/j.1365-313X.1993.00739.x
[22] Rogers M F, Julie T, Anireddy S N R, Asa B. SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol, 2012,13:1-17.
[23] 罗昕. 基于下一代测序的玉米高通量SNP开发及关联分析. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Luo X. High-Throughput SNP Development and Genome-Wide Association Study in Maize Based on Next-Generation Sequencing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[24] Landry B S, Hubert N, Etoh T, Harada J J, Lincoin S E. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552.
doi: 10.1139/g91-084
[25] Mahmood S, Li Z, Yue X P, Wang B, Chen J, Liu K D. Development of INDELs markers in oilseed rape (Brassica napus L.) using re-sequencing data. Mol Breed, 2016,36:79-84.
doi: 10.1007/s11032-016-0501-z
[26] 刘雪平. 人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究. 华中农业大学博士学位论文, 湖北武汉, 2005.
Liu X P. Inheritance of Seed Colour, Erucic, Acid Content and Flower Colour in Artificially Resynthesized Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2005 (in Chinese with English abstract) .
[27] Wang X D, Yu K J, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M L, Zhang J F. High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L. Front Plant Sci, 2015,6:1164.
doi: 10.3389/fpls.2015.01164 pmid: 26779193
[28] Zhang B, Liu C, Wang Y Q, Yao X, Wang F, Wu J S, King G J, Liu K D. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene convents flower colour from white to yellow in Brassica species. New Phytol, 2015,206:1513-1526.
doi: 10.1111/nph.13335 pmid: 25690717
[29] 杨晓刚. 大白菜遗传图谱的构建及花色性状基因的遗传定位. 曲阜师范大学硕士学位论文, 山东曲阜, 2018.
Yang X G. Construction of Genetic Map of Chinese Cabbage and Genetic Location of Flower Color Trait Gene. MS Thesis of Qufu Normal University, Qufu, Shandong, China, 2018 (in Chinese with English abstract).
[30] 杨茹涵, 刘进, 李加纳, 钱伟, 梅家琴. 甘蓝花色性状QTL定位及候选基因变异分析. 植物遗传资源学报, 2019,20:1271-1277.
Yang R H, Liu J, Li J N, Qian W, Mei J Q. QTL mapping and variation analysis of candidate gene for flower color in Brassica oleracea L. J Plant Genet Resour, 2019,20:1271-1277 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[13] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[14] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[15] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!