欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 599-612.doi: 10.3724/SP.J.1006.2021.04152

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘

李鹏程1,2(), 毕真真1,2(), 孙超1,2, 秦天元1,2, 梁文君1,2, 王一好1,2, 许德蓉1,2, 刘玉汇1,2, 张俊莲1,2, 白江平1,2,*()   

  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2020-07-11 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-06
  • 通讯作者: 白江平
  • 作者简介:李鹏程, E-mail: 526040572@qq.com;|毕真真, E-mail: bizhen925@sina.com
  • 基金资助:
    国家自然科学基金项目(31660432);国家自然科学基金项目(31960442);国家现代农业产业技术体系建设专项(CARS-09-P14);甘肃省马铃薯产业体系(GARS-03-P1);甘肃农业大学引进人才专项科研项目(2017RCZX-01);甘肃省科技厅项目(18JR3RA170)

Key genes mining of DNA methylation involved in regulating drought stress response in potato

LI Peng-Cheng1,2(), BI Zhen-Zhen1,2(), SUN Chao1,2, QIN Tian-Yuan1,2, LIANG Wen-Jun1,2, WANG Yi-Hao1,2, XU De-Rong1,2, LIU Yu-Hui1,2, ZHANG Jun-Lian1,2, BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-07-11 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-06
  • Contact: BAI Jiang-Ping
  • Supported by:
    National Natural Science Foundation of China(31660432);National Natural Science Foundation of China(31960442);China Agriculture Research System(CARS-09-P14);Gansu Potato Industry System(GARS-03-P1);Gansu Agricultural University Special Talent Research Project(2017RCZX-01);Gansu Science and Technology Fund(18JR3RA170)

摘要:

植物受到干旱胁迫时, 会通过DNA甲基化做出快速反应以帮助其应对胁迫。为探究在干旱胁迫下, DNA甲基化是如何影响基因转录表达, 本研究对甘露醇模拟干旱和5-azadC (去甲基化)处理下, 抗旱性不同的2个马铃薯品种(抗旱型, 青薯9号; 干旱敏感型, 大西洋)进行转录组学分析, 以Fold-change > 2和校正后P < 0.01进行差异表达基因(DEG)的筛选。GO富集分析发现, 2种处理都共同显著富集到氧化应激和碳水化合物代谢过程相关的GO term。说明不同耐旱性马铃薯在响应干旱胁迫时, 与这些GO term相关的基因也受DNA去甲基化调控。对既响应干旱又响应DNA去甲基化的1345个DEG进行KEGG功能富集发现, 与植物抗旱相关的通路有植物MAPK信号途径、植物激素信号转导途径、植物谷胱甘肽代谢通路、糖酵解与糖异生和磷酸肌醇代谢通路。说明这些通路相关基因在大西洋和青薯9号2个抗旱性不同的马铃薯品种中, 响应干旱的敏感性受DNA甲基化调控。接着对DEG上游1500 bp启动子区域进行顺式作用原件和甲基化CpG岛分析发现, 干旱胁迫下参与植物谷胱甘肽代谢的GST基因通过DNA去甲基化来降低启动子区ABRE和CAAT-box作用元件的甲基化水平, 进而激活该基因的表达以应对干旱胁迫。因此, 利用比较转录组学分析干旱和DNA去甲基化处理下的差异基因, 可挖掘到DNA甲基化参与调控马铃薯响应干旱胁迫的相关基因, 为研究马铃薯干旱胁迫响应的表观遗传学机理提供新的研究思路。

关键词: 马铃薯, 干旱胁迫, DNA甲基化, 转录组, 谷胱甘肽S转移酶

Abstract:

When plants are subjected to water stress, they will make a rapid response to drought stress through DNA methylation. In order to study how DNA methylation affects the transcriptional expression of genes under drought stress in potato, comparative transcriptomic analysis was carried out on two potato varieties with different drought resistances, which were planted under mannitol simulated drought and 5-azadC treatments. The differentially expressed genes (DEGs) were identified by Fold-change > 2 and corrected P < 0.01. Then DEGs were subjected to GO enrichment analysis. The results showed that these DEGs were enriched in the oxidative stress and carbohydrate metabolism, suggesting these GO term-related genes were also regulated by DNA demethylation, responded to drought stress in different drought-tolerant potatoes. The common 1345 DEGs both responding to drought stress and DNA demethylation were functionally enriched by KEGG pathway. The results showed that plant MAPK signal pathway, plant hormone signal transduction pathway, plant glutathione metabolism pathway, glycolysis and glutathione metabolism pathway and inositol phosphate metabolism pathway were related to plant drought resistance. It was suggested that the sensitivity of these pathway-related genes responding to drought stress were regulated by DNA methylation in Atlantic and Qingshu 9. The cis-acting elements and methylated CpG islands were analyzed in the 1500 bp promoter region of DEGs. The results showed that the methylation level of ABRE and CAAT-box acting elements in the promoter region of GST gene involved in plant glutathione metabolism were reduced through DNA demethylation under drought stress. Then the expression was activated in response to drought stress. Therefore, DEGs under drought and DNA demethylation treatments could be analyzed using comparative transcriptomic, and then the genes related to DNA methylation involved in regulating drought stress response in potato could be found. These results provide a new idea for further studying the epigenetic mechanism of drought stress response in potato.

Key words: potato, drought stress, DNA methylation, transcriptome, glutathione S transferase

表1

实时荧光定量PCR所用的引物"

基因
Gene
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
Actin AGGAGCATCCTGTCCTCCTAA CACCATCACCAGAGTCCAACA
PGSC0003DMG400001333 CTCAATTGCACCTACTAAGCAC GTGATATTCTTGCATGCAGAGG
PGSC0003DMG400005108 GTTGTGTTCTTGGTTTTAGGCT GTGGCATATTCATGGGCATAAG
PGSC0003DMG400005112 TCGAATTCTTGTCAACCTGGTA CCTGGTGGATCATAATTGCAAG
PGSC0003DMG400005116 CACAATGAAGCTCGTAGACAAG CACATACTCTACCTGCTTGACA
PGSC0003DMG400017231 CACGAATTCCAAGAAAAGCAGT CCCCAAATCTTCAAACACAACT
PGSC0003DMG400023921 CAACAAATGTGCTAGTGGGAAA TGTTTCCTGAAGGAGCATAGTT
PGSC0003DMG400002176 GCAGTCAAGTCAAGAAATATCTACC TGAACACGTACAAGTAAGTGGA
PGSC0003DMG400004977 GATTGATGATGTGAAGAGTGCC TGTCATAATGAAGGCCTTGAGT
PGSC0003DMG400011012 AATTTTTGTGTGTGGAGGGATG TATTCATTTGAGAGTAGCCGCA
PGSC0003DMG400016722 AACTAACAGGAACCACACTG GTTGTGTCCCATTTTAGGGA
PGSC0003DMG400020253 GCTGGAAGGTTCATGAAAGATG GGAATGGATATTCTCAATGGCG
PGSC0003DMG400024232 GAGCAGGATTTAGCCGTTTTAG AGGTGCAATTACTCCGTAGAAA
PGSC0003DMG400006270 ATGCAATTGCTGGTGCTTATAG AGCCTGATAGCAAGTAACAGTT
PGSC0003DMG400030038 ATGAAGTTTAGGGGTGACTCAG TACACAAACTTCCCGTATGTGA
PGSC0003DMG400030624 TGCTGAAAGTTCATATCCTGGT GAAGTGTCTTGATGCATAGCAG
PGSC0003DMG403001316 GATGCTGTGAATCACCCAAATT GATGGTGAACGTATACAACACG
PGSC0003DMG401000287 CTTCATTTGACTGGCCTCATTC TCATCAAAAGCACAACCAAGAG
PGSC0003DMG401023603 TTAACTGATGAACCGACTTGGA CAATTGTGAGACCAATCGAGAC
PGSC0003DMG400013765 TAAGTGCCAGAAGATTGGTCAT TACATCTCTTGCTCCTCAATCG
PGSC0003DMG400019274 CTGGGCTTTATAGGTATCGTGT ATATGAAGTTGAATTGAGGCGC
PGSC0003DMG400020139 AGCAACAAAAGACCTTCATCAC CATGCTCACTTTAACGTAGCTC
PGSC0003DMG400026261 GGATTTGAATTCGAGACGTCTG TCGTTGTAGAAATCATCGCAAC

表2

测序reads数比对到参考基因组的基本统计"

样品ID
Sample ID
总reads数
Total reads
总碱基数
Total bases (G)
GC含量
GC content (%)
Q20 (%) Q30 (%) 比对率
Mapped reads (%)
AtC_0h 132,318,050 19.85 44.33 99.93 96.45 82.13
AtA_2h 149,098,932 22.36 44.33 99.95 96.58 89.28
AtA_6h 157,099,124 23.56 44.50 99.94 96.40 84.40
AtA_12h 137,418,600 20.61 44.67 99.94 96.42 91.26
AtA_24h 146,797,368 22.02 45.67 99.95 96.59 91.93
AtM_2h 137,686,150 20.65 46.83 99.95 96.76 94.64
AtM_6h 147,166,226 22.07 45.67 99.91 96.45 79.18
AtM_12h 132,018,290 19.80 44.17 99.91 96.20 78.02
AtM_24h 143,830,794 21.57 44.83 99.94 96.43 87.10
QsC_0h 137,904,066 20.69 44.67 99.90 96.41 82.46
QsA_2h 133,480,780 20.02 45.67 99.93 96.68 92.56
QsA_6h 143,833,564 21.58 45.00 99.94 96.47 92.32
QsA_12h 150,781,586 22.62 44.67 99.93 96.41 84.35
QsA_24h 134,038,164 20.11 44.17 99.92 96.42 75.56
QsM_2h 145,819,266 21.87 44.83 99.92 96.43 81.50
QsM_6h 136,496,172 20.47 44.33 99.92 96.30 89.37
QsM_12h 130,599,502 19.59 44.50 99.93 96.40 85.07
QsM_24h 150,207,156 22.53 44.33 99.94 96.42 90.72

表3

干旱、DNA去甲基化处理下不同品系间差异表达基因数量"

处理
Treatment
比较组合
Comparison
差异基因数
Number of DEGs
上调差异基因数
Up-regulated DEGs
下调差异基因数
Down-regulated DEGs
对照Control A vs. Q_0h 1030 515 515
干旱Drought A vs. Q_2h 568 384 184
A vs. Q_6h 994 560 434
A vs. Q_12h 519 321 198
A vs. Q_24h 1251 471 780
DNA去甲基化
Demethylation
A vs. Q_2h 1603 1033 570
A vs. Q_6h 1142 501 641
A vs. Q_12h 1153 576 577
A vs. Q_24h 981 465 516

图1

马铃薯干旱胁迫和DNA去甲基化处理下差异基因表达谱 A和B是UpSet图, 分别表示干旱和DNA去甲基化处理下AvsQ各时间点比较得到的集合的重叠和DEG的数量。C是韦恩图。"

图2

差异基因的GO功能富集分析"

图3

两种处理下共同差异基因层次聚类分析"

图3

两种处理下共同差异基因层次聚类分析"

图4

两种处理下共同差异表达基因KEGG功能富集分析"

图4

两种处理下共同差异表达基因KEGG功能富集分析"

表4

共同富集KEGG与干旱相关通路基因功能注释"

KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO04016 PGSC0003DMG400000193 AT3G61510 1-氨基环丙烷-1-羧酸合酶2
1-aminocyclopropane-1-carboxylate synthase 2
KO04016 PGSC0003DMG400006639 AT3G25250 类丝氨酸/苏氨酸蛋白激酶 OXI1
serine/threonine-protein kinase OXI1-like
KO04016 PGSC0003DMG400001333 AT5G39670 Ca2+结合蛋白
Ca2+ binding protein
KO04016 PGSC0003DMG400001529 AT3G12500 酸性27-kD内切酶
Acidic 27-kD endochitinase
KO04016 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04016 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04016 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04016 PGSC0003DMG400001204 AT5G49480 Ca2+结合蛋白1
Ca2+-binding protein 1
KO04016 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO00480 PGSC0003DMG400031091 AT1G17180 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400024232 AT1G23820 亚精胺合成酶1
Spermidine synthase 1
KO00480 PGSC0003DMG400011012 AT2G29490 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400016722 AT3G03190 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400004977 AT5G41210 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002169 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002176 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400020253 AT3G27060 核糖核苷二磷酸还原酶小链
Ribonucleoside-diphosphate reductase small chain
KO00010 PGSC0003DMG400009472 AT1G22170 磷酸甘油酸变位酶
Phosphoglycerate mutase
KO00010 PGSC0003DMG400006270 AT4G33070 丙酮酸脱羧酶
Pyruvate decarboxylase
KO00010 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00010 PGSC0003DMG400030624 AT4G37840 己糖激酶
Hexokinase
KO00010 PGSC0003DMG400018084 AT3G47800 醛糖-1-表异构酶
Aldose-1-epimerase
KO00010 PGSC0003DMG403001316 AT5G15140 非细胞自主蛋白途径2
Non-cell-autonomous protein pathway 2
KO00010 PGSC0003DMG400012308 AT5G57330 醛糖1-表异构酶
Aldose 1-epimerase
KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO00010 PGSC0003DMG400004800 AT4G17260 L-乳酸脱氢酶B
L-lactate dehydrogenase B
KO00562 PGSC0003DMG400022715 AT2G26870 磷酸酯酶家族蛋白
Phosphoesterase family protein
KO00562 PGSC0003DMG401000287 AT4G26260 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400004872 AT1G14520 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00562 PGSC0003DMG401023603 AT3G02870 肌醇单磷酸酶1
Inositol monophosphatase 1
KO04075 PGSC0003DMG400019274 AT5G54510 吲哚-3-乙酸酰胺合成酶GH3.6
Indole-3-acetic acid-amido synthetase GH3.6
KO04075 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04075 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04075 PGSC0003DMG400021210 AT5G45110 NIM1 1
KO04075 PGSC0003DMG400020139 AT5G43700 生长素诱导蛋白22B
Auxin-induced protein 22B
KO04075 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04075 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400021676 AT4G03400 吲哚-3-乙酸酰胺合成酶GH3.5
Indole-3-acetic acid-amido synthetase GH3.5
KO04075 PGSC0003DMG400025856 AT2G14960 生长素和乙烯响应性GH3
Auxin and ethylene responsive GH3
KO04075 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO04075 PGSC0003DMG400026261 AT5G47220 ATERF-2/ATERF2/ERF2
KO04075 PGSC0003DMG400024978 AT2G14960 吲哚-3-乙酸酰胺合成酶GH3.3
Indole-3-acetic acid-amido synthetase GH3.3
KO04075 PGSC0003DMG400013765 AT4G32280 ATP结合蛋白
ATP binding protein

表4

共同富集KEGG与干旱相关通路基因功能注释"

KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO04016 PGSC0003DMG400000193 AT3G61510 1-氨基环丙烷-1-羧酸合酶2
1-aminocyclopropane-1-carboxylate synthase 2
KO04016 PGSC0003DMG400006639 AT3G25250 类丝氨酸/苏氨酸蛋白激酶 OXI1
serine/threonine-protein kinase OXI1-like
KO04016 PGSC0003DMG400001333 AT5G39670 Ca2+结合蛋白
Ca2+ binding protein
KO04016 PGSC0003DMG400001529 AT3G12500 酸性27-kD内切酶
Acidic 27-kD endochitinase
KO04016 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04016 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04016 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04016 PGSC0003DMG400001204 AT5G49480 Ca2+结合蛋白1
Ca2+-binding protein 1
KO04016 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO00480 PGSC0003DMG400031091 AT1G17180 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400024232 AT1G23820 亚精胺合成酶1
Spermidine synthase 1
KO00480 PGSC0003DMG400011012 AT2G29490 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400016722 AT3G03190 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400004977 AT5G41210 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002169 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002176 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400020253 AT3G27060 核糖核苷二磷酸还原酶小链
Ribonucleoside-diphosphate reductase small chain
KO00010 PGSC0003DMG400009472 AT1G22170 磷酸甘油酸变位酶
Phosphoglycerate mutase
KO00010 PGSC0003DMG400006270 AT4G33070 丙酮酸脱羧酶
Pyruvate decarboxylase
KO00010 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00010 PGSC0003DMG400030624 AT4G37840 己糖激酶
Hexokinase
KO00010 PGSC0003DMG400018084 AT3G47800 醛糖-1-表异构酶
Aldose-1-epimerase
KO00010 PGSC0003DMG403001316 AT5G15140 非细胞自主蛋白途径2
Non-cell-autonomous protein pathway 2
KO00010 PGSC0003DMG400012308 AT5G57330 醛糖1-表异构酶
Aldose 1-epimerase
KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO00010 PGSC0003DMG400004800 AT4G17260 L-乳酸脱氢酶B
L-lactate dehydrogenase B
KO00562 PGSC0003DMG400022715 AT2G26870 磷酸酯酶家族蛋白
Phosphoesterase family protein
KO00562 PGSC0003DMG401000287 AT4G26260 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400004872 AT1G14520 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00562 PGSC0003DMG401023603 AT3G02870 肌醇单磷酸酶1
Inositol monophosphatase 1
KO04075 PGSC0003DMG400019274 AT5G54510 吲哚-3-乙酸酰胺合成酶GH3.6
Indole-3-acetic acid-amido synthetase GH3.6
KO04075 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04075 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04075 PGSC0003DMG400021210 AT5G45110 NIM1 1
KO04075 PGSC0003DMG400020139 AT5G43700 生长素诱导蛋白22B
Auxin-induced protein 22B
KO04075 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04075 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400021676 AT4G03400 吲哚-3-乙酸酰胺合成酶GH3.5
Indole-3-acetic acid-amido synthetase GH3.5
KO04075 PGSC0003DMG400025856 AT2G14960 生长素和乙烯响应性GH3
Auxin and ethylene responsive GH3
KO04075 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO04075 PGSC0003DMG400026261 AT5G47220 ATERF-2/ATERF2/ERF2
KO04075 PGSC0003DMG400024978 AT2G14960 吲哚-3-乙酸酰胺合成酶GH3.3
Indole-3-acetic acid-amido synthetase GH3.3
KO04075 PGSC0003DMG400013765 AT4G32280 ATP结合蛋白
ATP binding protein

图5

谷胱甘肽S转移酶基因启动子分析"

图5

谷胱甘肽S转移酶基因启动子分析"

图6

干旱和5-azadC处理下差异表达基因的qRT-PCR验证"

图6

干旱和5-azadC处理下差异表达基因的qRT-PCR验证"

图7

干旱胁迫下马铃薯GST (PGSC0003DMG400004977)基因DNA去甲基化调控模式"

图7

干旱胁迫下马铃薯GST (PGSC0003DMG400004977)基因DNA去甲基化调控模式"

[1] 余林辉, 蔡晓腾, 徐萍, 向成斌. 植物抗旱节水: 从实验室到田间. 中国科学: 生命科学, 2017,47:145-154.
Yu L H, Cai X T, Xu P, Xiang C B. Drought resistant and water-saving plants: from laboratory to field. Sci Sin (Vitae), 2017,47:145-154 (in Chinese with English abstract).
[2] Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015,72:673-689.
[3] 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征. 植物生态学报, 2016,40:1189-1207.
Liu Y B, Li X R, Li M M, Liu D, Zhang W L. Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semi-arid areas of China. Chin J Plant Ecol, 2016,40:1189-1207 (in Chinese with English abstract).
[4] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016,22(6):52-60.
Zhu J K, Ni J P. Abiotic stress signaling and responses in plants. China Rice, 2016,22(6):52-60 (in Chinese with English abstract).
[5] 余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 王蒂, 张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018,44:63-74.
Yu B, Yang H Y, Wang L, Liu Y H, Bai J P, Wang D, Zhang J L. Genetic diversity analysis and comprehensive assessment of phenotypic traits in introduced potato germplasm resources in arid and semi-arid area. Acta Agron Sin, 2018,44:63-74 (in Chinese with English abstract).
[6] Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene, 2017,11:199-204.
[7] Pikaard C S, Mittelsten S O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol, 2014,6:a019315.
[8] Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011,1809:360-368.
doi: 10.1016/j.bbagrm.2011.04.006 pmid: 21549230
[9] Gallusci P, Hodgman C, Teyssier E, Seymour G B. DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci, 2016,7:807.
pmid: 27379113
[10] 赵云雷, 叶武威, 王俊娟, 樊保香, 宋丽艳. DNA甲基化与植物抗逆性研究进展. 西北植物学报, 2009,29:1479-1489.
Zhao Y L, Ye W W, Wang J J, Fan B X, Song L Y. Review of DNA methylation and plant stress-tolerance. Acta Bot Boreali- Occident Sin, 2009,29:1479-1489 (in Chinese with English abstract).
[11] Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat(Triticum aestivum L). Protoplasma, 2017,254:987-996.
[12] McLoughlin F, Arisz S A, Dekker H L, Kramer G, de Koster C G, Haring M A, Munnik T, Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J, 2013,450:573-581.
[13] Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C Y, Tang S, Wang Y, Yang L, Wang J. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet, 2014,15:S9.
[14] Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Aroua I, El Ayed M, M’hamdi M, Sassi K. Analysis of DNA methylation patterns associated with drought stress response in faba bean ( Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot, 2017,142:34-44.
[15] 李鹏程, 毕真真, 梁文君, 孙超, 张俊莲, 白江平. DNA甲基化参与调控马铃薯干旱胁迫响应. 作物学报, 2019,45:1595-1603
Li P C, Bi Z Z, Liang W J, Sun C, Zhang J L, Bai J P. DNA methylation involved in regulating drought stress response of potato. Acta Agron Sin, 2019,45:1595-1603 (in Chinese with English abstract).
[16] Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney R K, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep, 2016,6:19228.
pmid: 26759178
[17] Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice ( Oryza rufipogon Griff.). PLoS One, 2016,11:e0146242.
[18] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res, 2019,47:W191-W198.
[19] Li L C, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002,18:1427-1431.
[20] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327.
[21] 李艳, 钱伟强. 植物中DNA甲基化及去甲基化研究进展. 生命科学, 2017,29:302-309.
Li Y, Qian W Q. Mechanisms of DNA methylation and demethylation in plants. Chin Bull Life Sci, 2017,29:302-309 (in Chinese with English abstract).
[22] Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci, 2014,5:151.
[23] 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019,21(2):19-25.
Wang K Y, Chen F Q, Huang W X. Research advance on drought stress response mechanism in plants. J Agric Sci Technol, 2019,21(2):19-25 (in Chinese with English abstract).
[24] Molina C, Rotter B, Horres R, Udupa S M, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics, 2008,9:553.
[25] Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA, 2014,111:851-856.
[26] Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016,16:86.
doi: 10.1186/s12870-016-0771-y
[27] Jain M, Khurana J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J, 2009,276:3148-3162.
doi: 10.1111/j.1742-4658.2009.07033.x pmid: 19490115
[28] 陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫. 西北植物学报, 2004,24:1119-1130.
Chen K M, Gong H J, Wang S M. Glutathione metabolism and environmental stresses in plants. Acta Bot Boreali-Occident Sin, 2004,24:1119-1130 (in Chinese with English abstract).
[29] Li Z, Yu J, Peng Y, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and gamma-aminobutyric acid in association with improved drought tolerance in creeping bentgrass ( Agrostis stolonifera). Physiol Plant, 2017,159:42-58.
[30] Xu J, Xing X J, Tian Y S, Peng R H, Xue Y, Zhao W, Yao Q H. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One, 2015,10:e0136960.
doi: 10.1371/journal.pone.0136960 pmid: 26327625
[31] 孟大伟, 王悦, 李沛璇, 赵宇威, 周瑶, 韩玉, 郎晨婧, 金太成, 杨丽萍. 干旱诱导AtGSTF14基因DNA去甲基化. 分子植物育种, 2020,18:6108-6113.
Meng D W, Wang Y, Li P X, Zhao Y W, Zhou Y, Han Y, Lang C J, Jin T C, Yang L P. Drought-introduced DNA demethylation of AtGSTF14 gene. Mol Plant Breed, 2020,18:6108-6113 (in Chinese with English abstract).
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[11] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[12] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[13] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[14] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[15] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!