欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 983-990.doi: 10.3724/SP.J.1006.2021.04207

• 研究简报 • 上一篇    

甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究

唐鑫(), 李圆圆, 陆俊杏, 张涛*()   

  1. 重庆师范大学生命科学学院, 重庆 401331
  • 收稿日期:2020-09-09 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-15
  • 通讯作者: 张涛
  • 作者简介:E-mail: 1047910732@qq.com
  • 基金资助:
    重庆市自然科学基金项目(cstc2012jjA80010);重庆市科学技术局基金项目(cstc2017jcyjAX0108);重庆市教委科学技术项目(KJQN201900533)

Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus

TANG Xin(), LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao*()   

  1. College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2020-09-09 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-15
  • Contact: ZHANG Tao
  • Supported by:
    Natural Science Foundation of Chongqing(cstc2012jjA80010);Science and Technology Bureau Foundation Project Chongqing(cstc2017jcyjAX0108);Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJQN201900533)

摘要:

明确甘蓝型油菜温敏核雄性不育系160S花器形态变化、花药败育的时期和细胞学特征, 初步探究败育的原因, 为深入研究不育系160S的内在分子调控机制提供理论基础, 也对其在油菜两系杂交育种中的实际应用具有指导意义。本研究在15℃和28℃条件下培养试验材料160S, 利用体式显微镜分别观察花发育形态特征; 采用醋酸洋红染色方法观察各时期小孢子发育形态; 通过石蜡切片和苏木精-伊红染色对可育植株(Male Fertile/160S-MF)和不育植株(Male Sterile/160S-MS)花药细胞学特征进行显微观察; TUNEL染色法检测花药发育各时期绒毡层细胞凋亡情况。160S-MF在15℃表现为可育, 雄蕊正常发育, 成熟的花药呈黄色, 形态饱满, 正常开裂, 表面一层有活性的花粉附着在上面; 28℃条件下, 160S-MS花朵的雌蕊、萼片与160S-MF花朵无差异, 但花瓣变小, 花丝变短, 雄蕊明显退化, 花药干瘪呈黄褐色, 无花粉粒附着在花药上, 表现出雄性完全不育。160S-MF的小孢子能正常发育为成熟有活力的花粉。而160S-MS由于雄蕊完全败育, 未观察到小孢子和花粉粒。160S-MS花药在造孢时期和花粉母细胞时期与160S-MF无明显差异, 但在减数分裂期, 160S-MS花药绒毡层形态和结构出现异常, 绒毡层细胞排列不整齐, 细胞空泡化, 伴随提前解体。同时花粉母细胞发育受阻, 无四分体结构形成, 最终在减数分裂期完成前形成空的花粉囊。TUNEL检测发现, 160S-MS花药绒毡层细胞在减数分裂期开始凋亡。本研究结果表明, 160S属花粉母细胞败育型不育系, 败育时期发生在减数分裂期, 绒毡层异常降解, 绒毡层未向腺质型转化, 不能提供花粉母细胞发育所需要的营养物质, 致使花粉母细胞发育受阻无法形成四分体结构, 从而导致小孢子无法形成, 花药形成空的花粉囊, 产生雄性不育。

关键词: 甘蓝型油菜, 温敏细胞核雄性不育, 花药败育, 细胞学研究

Abstract:

The main purpose of this study was to explore the flower morphologies, anther abortion times and cytological characteristics of the thermo sensitive genic male sterile line 160S in Brassica napus. The results will provide a theoretical basis for further study on the molecular regulation mechanism and guide significance for its practical application in two-line hybrid breeding of rape. The 160S were grown at 15℃ and 28℃. The flower morphology, microspore, anther structure and tapetum at different stages of fertile plants (Male Fertile/160S-MF) and sterile plants (Male Sterile/160S-MS) were observed by stereomicroscope with carmine acetate staining, paraffin section, hematoxylin eosin staining and TUNEL staining. The anther was yellow, plump and dehiscent with high pollen viability at 15℃. At 28℃, there was no differences in pistil and potato chips between 160S-MS and 160S-MF flowers, but the petals and the filaments of 160S-MS were smaller and shorter. The stamens of 160S-MS degenerated obviously and its anthers were shriveled in yellowish brown without pollen grains, indicating completely male sterility. But interestingly, the 160S-MF developed normally with higher pollen viability. However, microspore and pollen grains were not observed in 160S-MS due to complete abortion of stamens. Paraffin section results showed that there was no significant difference between 160S-MS and 160S-MF in sporulation and pollen mother cell stages. The morphology and structure of tapetum of 160S-MS appeared some abnormal appearances, such as irregularly cell arrangement, vacuolization, and premature disintegration at meiosis stage. Meanwhile, the development of pollen mother cells were hindered and no tetrads structure were formed leading to the empty pollen sac before the completion of meiosis. TUNEL assay showed that the tapetum of 160-MS began to apoptosis at meiosis stage. In summary, these results showed that 160S belongs to pollen mother cell abortion type male sterile line, whose abortion stage occured during meiosis stage and the tapetum cells degraded prematurely and failed to be transformed to the glandular type, so that the nutrients needed for pollen mother cell development were not provided. The tetrad structures and microspores can not be formed, which leaded to the formation of empty anther sac and resulted in male sterility.

Key words: Brassica napus, thermo-sensitive genic male sterility, anther abortion, cytological study

图1

160S-MF和160S-MS花形态学观察 A: 160S-MF盛花期花朵; B: 160S-MF雄蕊; C: 160S-MF花瓣和萼片; D: 160S-MS盛花期花朵; E: 160S-MS雄蕊; F: 160S-MS花瓣和萼片。"

表1

160S-MF和160S-MS的花器性状比较"

花器特征
Flower trait
育性类型Types of male sterility
160S-MF 160S-MS
花冠径Diameter of corolla 18.97±1.68 15.58±0.78**
花瓣长Length of petal 13.98±1.16 12.30±0.57**
花瓣宽Width of petal 7.48±0.78 5.88±0.37**
雌蕊长Length of pistil 9.24±1.13 9.80±0.72
四强雄蕊长Length of four stronger stamens 9.38±0.45 6.11±1.09**
二弱雄蕊长Length of two weaker stamens 6.99±0.81 4.89±1.20**
四强花药长Length of four stronger stamens’ anther 2.25±0.15 1.80±0.08**
花丝长Length of four long filaments 7.44±0.46 4.69±0.89**
花柄长Length of stalk 29.13±1.38 16.50±1.27**
萼片长Length of sepal 7.10±0.82 6.61±0.51

图2

160S-MF和160S-MS 小孢子形态 A: 160S-MF四分体; B: 160S-MF早期小孢子; C: 160S-MF单核小孢子; D: 160S-MF双核小孢子; E: 160S-MF花粉粒; F: 160S-MS花粉粒。箭头所指为细胞核。"

图3

160S-MF花药不同发育阶段的显微结构 A和B: 造孢时期; C: 花粉母细胞时期; D: 减数分裂时期; E: 四分体时期; F: 单核靠边期; G: 双核期; H和I: 成熟花粉粒; Epi: 表皮层; Mid: 中层层; En: 药室内壁; T: 绒毡层; Sp: 造孢细胞; PMC: 小孢子母细胞; Te: 四分体; M: 小孢子; Po: 花粉粒。"

图4

160S-MS花药不同发育阶段的显微结构 A和B: 造孢时期; C: 花粉母细胞时期; D和E: 减数分裂时期; F: 败育花药药室; Epi: 表皮层; Mid: 中层层; En: 药室内壁; T: 绒毡层; Sp: 造孢细胞; PMC: 小孢子母细胞。"

图5

160S-MF、160S-MS花药各时期细胞凋亡TUNEL检测 A: 160S-MF花粉母细胞时期; B: 160S-MS花粉母细胞时期; C: 160S-MF减数分裂时期; D和E: 160S-MS减数分裂时期; F: 160S-MF四分体时期; G: 160S-MF双核期; T: 绒毡层; PMC: 小孢子母细胞; Te: 四分体; M: 小孢子。碘化丙染色细胞核呈红色荧光, TUNEL阳性细胞核呈绿色荧光(箭头所指)。"

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489
[2] Rondanini D P, Gomez N V, Agosti M B, Miralles D J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. Eur J Agron, 2012,37:56-65.
[3] Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci, 2007,12:427-432.
doi: 10.1016/j.tplants.2007.08.005 pmid: 17720610
[4] Chen L, Liu Y G. Male sterility and fertility restoration in crops. Ann Rev Plant Biol, 2014,65:579-606.
[5] Virmani S S, Ilyas-Ahmed M. Environment-sensitive genic male sterility (EGMS) in crops. Adv Agron, 2001,72:139-195.
[6] Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene ( BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007,115:643-651.
doi: 10.1007/s00122-007-0594-1 pmid: 17605126
[7] Sun Y, Zhang D, Wang Z, Guo Y, Sun X, Li W, Zhi W, Hu S. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. BMC Plant Biol, 2020,20:8.
[8] 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究. 中国农业科学, 1985,18(2):44-48.
Shi M S. The discovery and study of the photosensitive recessive male-sterile rice ( Oryza sativa L. subsp. japonica). Sci Agric Sin, 1985,18(2):44-48 (in Chinese with abstract).
[9] Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice ( Oryza sativa L.). Theo Appl Genet, 2005,111:1271-1277.
[10] Tang J H, Fu Z Y, Hu Y M, Li J S, Sun L L, Ji H Q. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet, 2006,113:11-15.
doi: 10.1007/s00122-006-0262-x pmid: 16783588
[11] Xing Q H, Ru Z G, Zhou C J, Xue X, Liang C Y, Yang D E, Jin D M, Wang B. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene ( wtms1) in wheat. Theor Appl Genet, 2003,107:1500-1504.
doi: 10.1007/s00122-003-1385-y pmid: 12928780
[12] Frasch R M, Weigand C, Perez P T, Palmer R G, Sandhu D. Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J Hered, 2011,102:11-16.
doi: 10.1093/jhered/esq100 pmid: 20864624
[13] Zhu J, Lou Y, Shi Q S, Zhang S, Zhou W T, Yang J, Zhang C, Yao X Z, Xu T, Liu J L, Zhou L, Hou J Q, Wang J Q, Wang S, Huang X H, Yang Z N. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat Plants, 2020,6:360-367.
pmid: 32231254
[14] 李可琪, 曾新华, 袁荣, 闫晓红, 吴刚. 甘蓝型油菜温敏细胞核雄性不育系TE5A花药发育的细胞学研究. 中国农业科学, 2016,49:2408-2417.
Li K Q, Zeng X H, Yuan R, Yan X H, Wu G. Cytological researches on the anther development of a thermo-sensitive genic male sterile line TE5A in Brassica napus. Sci Agric Sin, 2016,49:2408-2417 (in Chinese with English abstract).
[15] Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant meiotic prophase I leads to genic male sterility in the novel TE5A mutant of Brassica napus. Sci Rep, 2016,6:33955.
pmid: 27670217
[16] Yu C Y, Guo Y F, Ge J, Hu Y M, Dong J G, Dong Z S. Characterization of a new temperature-sensitive male sterile line SP2S in rapeseed ( Brassica napus L.). Euphytica, 2015,206:473-485.
[17] 张涛, 沈余亮, 王瑞雪, 邹燕, 赵敬会, 李荣冲, 梁晶龙, 龚慧明. 甘蓝型油菜雄性不育系160S育性转换与利用. 西北植物学报, 2012,32:35-41.
Zhang T, Shen L Y, Wang R X, Zou Y, Zhao J H, Li R C, Liang J L, Gong H M. Fertility alteration and utilization of male-sterile line 160S in Brassica napus. Acta Bot Boreali-Occident Sin, 2012,32:35-41 (in Chinese with English abstract).
[18] Laser K D, Lersten N K. Anatomy and cytology of microsporo-genesis in cytoplasmic male sterile (CMS) angiosperms. Bot Rev, 1972,38:425-454.
[19] Wang S P, Zhang G S, Song Q L, Zhang Y X, Li Z, Guo J L, Niu N, Ma S C, Wang J W. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One, 2015,10:e0119557.
doi: 10.1371/journal.pone.0119557 pmid: 25803723
[20] 余凤群, 傅廷栋. 甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究. 武汉植物学研究, 1990,8:209-216.
Yu F Q, Fu T D. Cytomorphology study on anther development of several male sterile lines of Brassica napus. J Wuhan Bot Res, 1990,8:209-216 (in Chinese with English abstract).
[21] 葛娟, 郭英芬, 于澄宇, 张国云, 董军刚, 董振生. 甘蓝型油菜光、温敏雄性不育系Huiyou 50S花粉败育的细胞学观察. 作物学报, 2012,38:541-548.
Ge J, Guo Y F, Yu C Y, Zhang G Y, Dong J G, Dong Z S. Cytological observation of anther development of photoperiod/thermo-sensitive male sterile line Huiyou 50S in Brassica napus. Acta Agron Sin, 2012,38:541-548 (in Chinese with English abstract).
[22] Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol, 2005,56:393-434.
pmid: 15862102
[23] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I W, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005,17:2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453
[24] Zhao D Z, Wang G F, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002,16:2021-2031.
pmid: 12154130
[25] Bedinger P. The remarkable biology of pollen. Plant Cell, 1992,4:879-887.
[26] Xu J, Ding Z W, Vizcay-Barrena G, Shi J X, Liang W Q, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson Z A, Zhang D B. Aborted microspores acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell, 2014,26:1544-1556.
doi: 10.1105/tpc.114.122986 pmid: 24781116
[27] Liu Z H, Shi X Y, Li S, Hu G, Zhang L L, Song X Y. Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int J Mol Sci, 2018,19:1708.
[28] Papini A, Mosti S, Brighigna L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma, 1999,207:213-221.
[29] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The ricetapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006,18:2999-3014.
[30] Zhang D, Liu D, Lyu X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell, 2014,26:2939-2961.
[31] Jacobowitz J R, Doyle W C, Weng J K. PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. Plant Cell, 2019,31:848-861.
doi: 10.1105/tpc.18.00907 pmid: 30886127
[32] Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu Y G, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. J Exp Bot, 2020,71:2551-2560.
doi: 10.1093/jxb/eraa045 pmid: 31989154
[33] Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020,182:962-976.
pmid: 31772077
[34] 许代香, 贾乐东, 王瑞, 马国强, 段谋正, 曲存民, 李加纳. 甘蓝型油菜显性核不育系D3A的细胞学研究. 西南大学学报(自然科学版), 2020,42(1):16-21.
Xu D X, Jia L D, Wang R, Ma G Q, Duan M Z, Qu C M, Li J N. Cytological studies of dominant GMS sterile line D3A in Brassica napus L. J Southwest Univ (Nat Sci Edn), 2020,42(1):16-21 (in Chinese with English abstract).
[35] 李六林. 植物雄性不育机理研究. 北京: 中国农业科学技术出版社, 2008. p 5.
Li L L. Study on the Mechanism of Plant Male Sterility. Beijing: China Agricultural Science and Technology Press, 2008. p 5 (in Chinese).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[11] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[12] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[13] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!