欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1854-1862.doi: 10.3724/SP.J.1006.2021.04208

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花花器官突变体的鉴定及候选基因的克隆

杨琴莉1(), 杨多凤1, 丁林云1, 赵汀2, 张军2, 梅欢2, 黄楚珺2, 高阳1, 叶莉1, 高梦涛1, 严孙艺2, 张天真1,2, 胡艳1,2,*()   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
    2浙江大学农业与生物技术学院, 浙江杭州 310058
  • 收稿日期:2020-09-10 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-03-11
  • 通讯作者: 胡艳
  • 作者简介:E-mail: 739768392@qq.com
  • 基金资助:
    国家自然科学基金项目(31970320);国家转基因生物新品种培育重大专项(2016ZX08009-003)

Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes

YANG Qin-Li1(), YANG Duo-Feng1, DING Lin-Yun1, ZHANG Ting2, ZHANG Jun2, MEI Huan2, HUANG Chu-Jun2, GAO Yang1, YE Li1, GAO Meng-Tao1, YAN Sun-Yi2, ZHANG Tian-Zhen1,2, HU Yan1,2,*()   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2College of Agricultural & Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang, China
  • Received:2020-09-10 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-03-11
  • Contact: HU Yan
  • Supported by:
    National Natural Science Foundation of China(31970320);National Major Project for Developing New GM Crops(2016ZX08009-003)

摘要:

棉花是世界性的重要经济作物, 是天然纤维的主要来源。棉花生殖生长过程现蕾、开花、结铃都直接影响棉花主要经济性状——棉纤维的产量和品质。本研究在转基因棉花材料中发现了1个花器官突变体, 命名为182-9, 其花器官呈现瓣化特征。PCR和Southern杂交证明突变体182-9中的外源基因已整合到基因组中, 且为单拷贝插入。通过基因组重测序进行序列比较发现, 突变体182-9基因组中外源T-DNA插入位点为染色体A11:59086840。PCR和Southern杂交对插入位点进行了进一步验证。根据棉花基因组注释结果, 在基因组插入位点附近有3个候选基因(GH_A11G2251GH_A11G2252GH_A11G2253)。其中GH_A11G2251AP2类基因。已有研究证明, AP2类基因为花器官ABC模型中控制萼片和花瓣形成的A类功能基因。qRT-PCR结果显示, GH_A11G2251在转基因受体W0的花瓣、雌蕊和雄蕊3个组织中的表达与突变体182-9中存在显著性差异。本研究为进一步深入探究棉花花器官发育的分子机制研究提供了参考。

关键词: 棉花, 转基因, 花器官, 突变体, 基因克隆

Abstract:

Cotton is an important economic crop and the main source of natural fiber in the world. The budding, flowering and bolling during cotton growth and development directly affect the yield and quality of cotton fiber that are the main economic traits of cotton. In this study, we found a flower organ mutant (named 182-9) in transgenic cottons, which displayed the floral organ petaloid feature. PCR and Southern blotting confirmed that the foreign T-DNA was integrated into the 182-9 genome with a single copy. Comparative analysis of the resequencing data revealed that the exogenic T-DNA was inserted in the 182-9 on chromosome A11: 59086840. The insertion site was further verified by PCR and southern blot. According to the gene annotation of cotton genome, there were three candidate genes of GH_A11G2251, GH_A11G2252, and GH_ A11G2253, near to the insertion site. GH_ A11G2251 encoded AP2 genes controlling the formation of sepals and petals in the ABC model of flower organs as previous report. qRT-PCR showed that there were significant differences in the expression level of GH_A11G2251 in petals, pistil and stamens of transgenic receptor W0 and mutant 182-9. Our study provided the basis for further study of molecular mechanism in cotton floral organ development.

Key words: cotton, transgenic, floral organ, mutant, gene cloning

图1

转基因载体T-DNA序列"

图2

突变体182-9与转基因受体W0花器官表型比较 A: 转基因受体W0花器官整体结构与子房。B: 突变体182-9花器官结构。C: 转基因受体W0苞叶、萼片、花瓣、雌蕊雄蕊结构。D: 突变体182-9苞叶、萼片以及瓣化结构。标尺为1 cm。"

图3

PCR检测转基因材料(182-9) NPTII基因 M: DNA分子量Marker; W0: 阴性对照; 1: 转基因株系182-9; 2: 转基因株系182-36; 3: 转基因株系182-91; 4: 转基因株系182-150; 5: 转基因株系182-172; 6: 转基因株系182-173; 7: 转基因株系182-187。"

图4

Southern杂交检测突变体182-9中外源基因NPTII的整合 M: DNA marker; 1: 转基因受体W0; C: 质粒; 2: 转基因株系182-187; 3: 转基因株系182-36; 4: 转基因株系182-173; 5: 转基因株系182-9 (箭头所示)。"

表1

重测序数据评估"

样品
Sample
原始reads
Raw reads
过滤后reads
Clean reads
原始碱基数
Raw base (Gb)
过滤后碱基数Clean base (Gb) Q30
(%)
GC含量
GC content (%)
182-9 245,670,776 245,536,479 73.70 73.66 91.81 35.43
W0 236,081,132 235,926,310 70.82 70.78 89.16 35.51

图5

PCR检测外源T-DNA在基因组中插入位点 A: PCR扩增条带; B: 扩增序列的测序结果(红色部分为棉花基因组序列, 其他为T-DNA序列)。M: DNA marker; W0: 转基因受体; 182-9: 转基因株系。"

图6

插入位点的Southern检测 M: DNA marker; C: 阳性质粒; 1: 转基因株系182-9; 2: 转基因受体W0。箭头所示为转基因182-9中特异性条带。"

表2

候选基因的注释信息"

基因ID
Gene ID
拟南芥中同源基因
Homologous genes in Arabidopsis
功能描述
Function annotation
GH_A11G2251 ANT AP2类乙烯反应转录因子
AP2-like ethylene-responsive transcription factor ANT
GH_A11G2252 At1g65750 假定核糖核酸酶H蛋白At1g65750
Putative ribonuclease H protein At1g65750
GH_A11G2253 NA NA

图7

候选基因与插入位点的相对位置"

图8

GH_A11G2251在182-9和W0两个材料中的扩增序列比较"

图9

GH_A11G2252在182-9和W0两个材料中的扩增序列比较"

图10

GH_A11G2253在182-9和W0两个材料中的扩增序列比较"

图11

候选基因的在花器官中表达分析 A: W0和182-9组织示意图; B: 候选基因在突变体182-9及其野生型W0中的表达水平。其中, *表示在0.05水平差异显著。"

[1] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105:1166-1174.
pmid: 12582895
[2] 陈良兵, 李永起. 棉花纤维发育的分子研究进展. 分子植物育种, 2004, 2:105-110.
Chen L B, Li Y Q. The research progress on cotton fiber development at molecular level. Mol Plant Breed, 2004, 2:105-110 (in Chinese with English abstract).
[3] Silva C S, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Front Plant Sci, 2016, 6:1193.
[4] Kotilainen M, Elomaa P, Uimari A, Albert V A, Yu D Y, Teeri T H. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell, 2000, 12:1893-1902.
pmid: 11041884
[5] Theißen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85.
doi: 10.1016/S1369-5266(00)00139-4
[6] 张云, 刘青林. 植物花发育的分子机理研究进展. 植物学通报, 2003, 20:589-601.
Zhang Y, Liu Q Y. Proceedings on molecular mechanism of plant flower development. Chin Bull Bot, 2003, 20:589-601 (in Chinese with English abstract).
[7] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353:31-37.
doi: 10.1038/353031a0
[8] Kaufmann K, Melzer R, Theißen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347:183-198.
pmid: 15777618
[9] 王亚杰. 巴西橡胶树MADS-box基因家族的克隆、表达谱分析及功能验证. 海南大学硕士学位论文, 海南海口, 2017.
Wang Y J. Molcular Cloning, Expression Profile and Functional Analysis of MADS-box Genes in Hevea brasiliensis. MS Thesis of Hainan University, Haikou, Hainan, China, 2017 (in Chinese with English abstract).
[10] Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473:97-100.
doi: 10.1038/nature09916
[11] Ng M, Yanofsky M F. Function and evolution of the plant mads-box gene family. Nat Rev Genet, 2001, 2:186-195.
pmid: 11256070
[12] Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q J, Gerentes D, Perez P, Smyth D R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8:155-168.
pmid: 8742707
[13] Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8:137-153.
pmid: 8742706
[14] Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. Dissection of floral induction pathways using global expression analysis. Development, 2003, 130:6001-6012.
doi: 10.1242/dev.00842
[15] Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, 119:109-120.
doi: 10.1016/j.cell.2004.09.018
[16] Zhao Q, Wang T, Wei X D. Function of AP2 gene during floral organs development in higher plant: review. Chin J Trop Agric, 2005, 259:50-56.
[17] Wang X Y, Fan S L, Song M Z, Pang C Y, Wei H L, Yu J W, Ma Q F, Yu S X, Fang D D. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS One, 2014, 9:e91869.
doi: 10.1371/journal.pone.0091869
[18] Zhang X H, Dou L L, Pang C Y, Song M Z, Yu S X. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genomics, 2015, 290:115-126.
doi: 10.1007/s00438-014-0901-x
[19] Zhang X H, Wei J H, Fan S L, Song M Z, Pang C Y, Wei H L, Wang C S, Yu S Y. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton(Gossypium hirsutum L.). Plant Sci, 2016, 242:178-186.
doi: 10.1016/j.plantsci.2015.05.001
[20] 王力娜. 棉花MADS-box基因家族的克隆、表达谱分析及功能验证. 中国农业科学院硕士学位论文, 北京, 2010.
Wang L N. Molecular Cloning, Expression Profile and Functional Analysis of MADS-Box Genes in Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).
[21] 闻可心, 刘雪梅. AP2功能基因在植物花发育中的重要作用. 生物技术通报, 2010, (2):1-7.
Wen K X, Liu X M. The important role of AP2 functional genes in plant floral developmen. Biotechnol Bull, 2010, (2):1-7 (in Chinese with English abstract).
[22] Irish V F. Floral development in Arabidopsis. Plant Physiol Biochem, 1998, 36:61-68.
doi: 10.1016/S0981-9428(98)80091-0
[23] Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol, 1999, 216:260-264.
pmid: 10588876
[24] Altschul S F, Madden T L, Schffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
pmid: 9254694
[25] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11:1650.
doi: 10.1038/nprot.2016.095
[26] Lin D, Hong P, Zhang S H, Xu W Z, Jamal M, Yan K J, Lei Y Y, Li L, Ruan Y J, Fu Z F, Li G L, Cao G. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet, 2018, 50:754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467
[27] Huang C, Sun H Y, Xu D Y, Chen Q Y, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115:E334-E341.
doi: 10.1073/pnas.1718058115
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[9] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[12] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[13] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!