作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2184-2198.doi: 10.3724/SP.J.1006.2021.04240
李鹏1(), 刘彻1, 宋皓1, 姚盼盼1, 苏沛霖1, 魏跃伟1, 杨永霞1,*(), 李青常2,*()
LI Peng1(), LIU Che1, SONG Hao1, YAO Pan-Pan1, SU Pei-Lin1, WEI Yao-Wei1, YANG Yong-Xia1,*(), LI Qing-Chang2,*()
摘要:
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins, nsLTPs)可以在体外转移脂质, 调节植物的生长发育以及对环境非生物和生物胁迫作出反应等。本研究从烟草栽培品种K326 (Nicotiana tabacum L.)基因组中鉴定出74个nsLTPs基因, 对其系统发育关系、基因结构、保守基序、染色体定位、基因重复、启动子顺式作用元件、3D结构和激素与非生物胁迫处理下的表达模式进行了分析。结果表明, 根据8个半胱氨酸之间的间隔和序列相似性将其分为I、II、III、IV、V、VII、VIII和XIII八种类型, 相同类型的NtLTPs具有相似的内含子-外显子基因结构和保守基序模式, motif 2和motif 3是NtLTPs基因家族的特征基序。在进化过程中, 片段重复是NtLTPs基因家族扩展的主要原因, 干旱处理后的RNA-seq分析发现, 在进化过程中, 不同基因重复事件发生后功能分化模式存在差异。启动子分析表明, 它们含有多种光反应、激素和非生物胁迫响应顺式作用元件。进一步采用qRT-PCR分析发现, NtLTPs家族基因在烟草植株的不同组织和器官中具有不同的表达模式, 可以响应干旱、盐等非生物胁迫以及IAA、GA、SA等激素处理。研究结果为深入分析NtLTPs家族基因的功能提供了理论参考, 并为进一步的分子育种提供了理论基础。
[1] |
Carvalho A O, Gomes V M. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007, 28: 1144-1153.
doi: 10.1016/j.peptides.2007.03.004 |
[2] |
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681.
doi: 10.1093/jxb/erv313 |
[3] |
Jose-Estanyol M, Gomis-Ruth F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42: 355-365.
doi: 10.1016/j.plaphy.2004.03.009 |
[4] | Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Biol, 1996, 47: 627-654. |
[5] |
Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86-108.
doi: 10.1186/1471-2164-9-86 pmid: 18291034 |
[6] |
Liu W, Huang D, Liu K, Hu S, Yu J, Gao G, Song S. Discovery, Identification and comparative analysis of non-specific lipid transfer protein (nsLtp) family in Solanaceae. Genom Proteom Bioinf, 2010, 8: 229-237.
doi: 10.1016/S1672-0229(10)60024-1 |
[7] |
D’Agostino N, Buonanno M, Ayoub J, Barone A, Monti S M, Rigano M M. Identification of non-specific lipid transfer protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep (UK), 2019, 9: 1607.
doi: 10.1038/s41598-018-38301-z |
[8] |
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics, 2019, 20: 375.
doi: 10.1186/s12864-019-5698-x |
[9] |
Edstam M M, Viitanen L, Salminen T A, Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. Mol Plant, 2011, 4: 947-964.
doi: 10.1093/mp/ssr019 |
[10] | Fang Z W, He Y Q, Liu Y K, Jiang W Q, Song J H, Wang S P, Ma D F, Yin J L. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J Integr Agric, 2019, 18: 2-17. |
[11] |
Wei K F, Zhong X J. Non-specific lipid transfer proteins in maize. BMC Plant Biol, 2014, 14: 281.
doi: 10.1186/s12870-014-0281-8 |
[12] |
Zhang M Y, Kim Y J, Zong J, Lin H, Dievart A, Li H J, Zhang D B, Liang W Q. Genome-wide analysis of the barley non-specific lipid transfer protein gene family. Crop J, 2019, 7: 65-76.
doi: 10.1016/j.cj.2018.07.009 |
[13] |
Chae K, Gonong B J, Kim S C, Kieslich C A, Morikis D, Balasubramanian S, Lord E M. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot, 2010, 61: 4277-4290.
doi: 10.1093/jxb/erq228 |
[14] |
Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399-403.
doi: 10.1038/nature00962 |
[15] |
Yeats T H, Rose J K. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci, 2008, 17: 191-198.
doi: 10.1110/ps.073300108 |
[16] |
Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong C H. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol Biol, 2016, 91: 471-484.
doi: 10.1007/s11103-016-0482-7 |
[17] |
Zaidi M A, O'Leary S J B, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. Plant Cell Rep, 2020, 39: 1185-1197.
doi: 10.1007/s00299-020-02556-6 |
[18] |
Deng T, Yao H, Wang J, Wang J, Xue H, Zuo K. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci Rep (UK), 2016, 6: 26829.
doi: 10.1038/srep26829 |
[19] |
Potocka I, Baldwin T C, Kurczynska E U. Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep, 2012, 31: 2031-2045.
doi: 10.1007/s00299-012-1314-0 |
[20] | Finkina E I, Melnikova D N, Bogdanov I V, Ovchinnikova T V. Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nat, 2016, 8: 47-61. |
[21] |
Gebhardt C, Vieths S, Gubesch M, Averbeck M, Simon J C, Treudler R. 10 kDa lipid transfer protein: the main allergenic structure in a German patient with anaphylaxis to blueberry. Allergy, 2009, 64: 498-499.
doi: 10.1111/j.1398-9995.2008.01923.x pmid: 19220224 |
[22] |
Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64: 1755-1767.
doi: 10.1093/jxb/ert040 |
[23] |
McLaughlin J E, Bin-Umer M A, Widiez T, Finn D, McCormick S, Tumer N E. A lipid transfer protein increases the glutathione content and enhances Arabidopsis resistance to a trichothecene mycotoxin. PLoS One, 2015, 10: e0130204.
doi: 10.1371/journal.pone.0130204 |
[24] |
Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed, 2006, 17: 159-171.
doi: 10.1007/s11032-005-4736-3 |
[25] |
Wang X, Li Q, Cheng C, Zhang K, Lou Q, Li J, Chen J. Genome-wide analysis of a putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome, 2020, 63: 225-238.
doi: 10.1139/gen-2019-0157 |
[26] |
Zhu X, Li Z, Xu H, Zhou M, Du L, Zhang Z. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genom, 2012, 12: 481-488.
doi: 10.1007/s10142-012-0286-z |
[27] | Gaier S, Marsh J, Oberhuber C, Rigby N M, Shewry P R. Purification and structural stability of the peach allergens Pru p 1 and Pru p 3. Mol Nutr Food Res, 2008, 52: S220-229. |
[28] |
Palacin A, Varela J, Quirce S, Pozo V D, Tordesillas L, Barranco P, Fernandez-Nieto M, Sastre J, Diaz-Perales A, Salcedo G. Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker's asthma. Clin Exp Allergy, 2009, 39: 1267-1276.
doi: 10.1111/j.1365-2222.2009.03280.x pmid: 19486028 |
[29] |
Choi Y E, Lim S, Kim H J, Han J Y, Lee M H, Yang Y, Kim J A, Kim Y S. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J, 2012, 70: 480-491.
doi: 10.1111/tpj.2012.70.issue-3 |
[30] | 徐扬. 非特异性脂转移蛋白NtLTP4作为正调控因子参与烟草对非生物和生物胁迫的响应. 山东农业大学博士学位论文, 山东泰安, 2018. |
Xu Y. Non-specific Lipid Transfer Protein NtLTP4 as a Positive Regulator Involved in Abiotic and Biotic Stress in Nicotiana tabacum. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract). | |
[31] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[32] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325 |
[33] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 |
[34] |
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 282.
doi: 10.1186/1471-2229-10-282 |
[35] |
Yang Z, Bielawski J P. Statistical methods for detecting molecular. Trends Ecol Evol, 2000, 15: 496-203.
pmid: 11114436 |
[36] |
Douliez J P, Michon T, Elmorjani K, Marion D. Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci, 2000, 32: 1-20.
doi: 10.1006/jcrs.2000.0315 |
[37] |
Deng W, Li R, Xu Y, Mao R, Chen S, Chen L, Chen L, Liu Y G, Chen Y. A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod-and thermo-sensitive dwarfism in rice. J Exp Bot, 2020, 71: 1294-1305.
doi: 10.1093/jxb/erz500 |
[38] |
Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep(UK)), 2016, 6: 38948.
doi: 10.1038/srep38948 |
[39] |
Lynch M. Intron evolution as a population-genetic process. Proc Natl Acad Sci USA, 2002, 99: 6118-6123.
doi: 10.1073/pnas.092595699 |
[40] |
Mattick J S, Gagen M J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18: 1611-1630.
pmid: 11504843 |
[41] |
Li J, Gao G, Xu K, Chen B, Yan G, Li F, Qiao J, Zhang T, Wu X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One, 2014, 9: e84556.
doi: 10.1371/journal.pone.0084556 |
[42] |
Moore R C, Purugganan M D. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol, 2005, 8: 122-128.
doi: 10.1016/j.pbi.2004.12.001 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[6] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[7] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[8] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[9] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[10] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[11] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[12] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[13] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[14] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[15] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
|