作物学报 ›› 2022, Vol. 48 ›› Issue (1): 48-62.doi: 10.3724/SP.J.1006.2022.11006
李玲红(), 张哲, 陈永明, 尤明山, 倪中福, 邢界文*()
LI Ling-Hong(), ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen*()
摘要:
为了明确突变体颖壳蜡质含量显著变化的分子机制, 本研究对源自济麦22颖壳蜡质缺失突变体glossy1与野生型进行了转录组分析。结果表明, 在glossy1突变体中, 共筛选到12,230个差异表达基因, 其中5811个基因在突变体中上调表达, 6419个下调表达。GO (gene ontology)功能富集分析发现, 差异基因主要富集在蜡质合成和转运途径, 具体分布在酰基转移酶活性、脂质结合和水解酶活性等条目, 由此推测这些途径与小麦穗部蜡质缺失性状是紧密相关的。我们还利用RT-qPCR检测了参与蜡质代谢途径部分基因的表达, 结果与转录组结果是一致的。本研究为今后探究小麦蜡质代谢的分子机制和基因调控网络提供了数据支持, 同时也为抗逆小麦育种奠定了理论基础。
[1] | Sturaro M, Motto M, Hemantaranjan A. Plant cuticular waxes: biosynthesis and functions. Adv Plant Physiol, 2006, 9:229-251. |
[2] | Yeats T H, Rose J K C. The formation and function of plant cuticles. Plant Physiol, 2013, 163:5-20. |
[3] | Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol, 2001, 125:1103-1114. |
[4] | Leibundgut M, Jenni S, Frick C, Ban N. Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science, 2007, 316:288-290. |
[5] | LiBeisson Y, Shorrosh B, Beisson F, Andersson M X, Arondel V, Bates P D, Baud S, Bird D, DeBono A, Durrett T P. Acyl-lipid metabolism. Arabidopsis Book, 2010, 8:e0133. |
[6] | Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24:3106-3118. |
[7] | Owen R, Huanquan Z, Hepworth S R, Patricia L, Reinhard J, Ljerka K. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006, 142:866-877. |
[8] | Wang M, Wang Y, Wu H, Xu J, Li T, Hegebarth D, Jetter R, Chen L, Wang Z. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Sci Rep, 2016, 6:25008. |
[9] | Tulloch A P. Composition of leaf surface waxes of Triticum species: variation with age and tissue. Phytochemistry, 1973, 12:2225-2232. |
[10] | Wettstein-Knowles P V, Søgaard B. The cer-cqu region in barley: gene cluster or multifunctional gene. Carlsberg Res Commun, 1980, 45:125-141. |
[11] | Zhang Z, Wang W, Li W. Genetic interactions underlying the biosynthesis and inhibition of beta-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One, 2013, 8:e54129. |
[12] | Hen-Avivi S, Savin O, Racovita R C, Lee W S, Adamski N M, Malitsky S, Almekias-Siegl E, Levy M, Vautrin S, Berges H, Friedlander G, Kartvelishvily E, Ben-Zvi G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A. A metabolic gene cluster in the wheat W1 and the barley Cer-cquloci determines beta-diketone biosynthesis and glaucousness. Plant Cell, 2016, 28:1440-1460. |
[13] | Pighin J A, Huanquan Z, Balakshin L J, Goodman I P, Western T L, Reinhard J, Ljerka K, A Lacey S. Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306:702-704. |
[14] | Debono A, Yeats T H, Rose J K C, Bird D, Jetter R, Kunst L, Samuels L. ArabidopsisLTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 2009, 21:1230-1238. |
[15] | Li L, Chai L, Xu H, Zhai H, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Chen X, Ni Z. Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat(Triticum aestivum L.). Theor Appl Genet, 2021, 134:835-847. |
[16] | Marioni J C, Mason C E, Mane S M, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008, 18:1509-1517. |
[17] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15:550. |
[18] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408. |
[19] | Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010, 11:R14. |
[20] | Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13:1694-1708. |
[21] | Huang D, Feurtado J A, Smith M A, Flatman L K, Koh C, Cutler A J. Long noncoding miRNA gene represses wheat beta- diketone waxes. Proc Natl Acad Sci USA, 2017, 114:E3149-E3158. |
[22] | Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590:600-605. |
[23] | Li L, Qi Z, Chai L, Chen Z, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Ni Z. The semidominant mutation w5 impairs epicuticular wax deposition in common wheat(Triticum aestivum L.). Theor Appl Genet, 2020, 133:1213-1225. |
[24] | Adamski N M, Bush M S, Simmonds J, Turner A S, Mugford S G, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C. The inhibitor of wax 1 locus(Iw1) prevents formation of beta- and OH-beta-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J, 2013, 74:989-1002. |
[25] | Bianchi G, Figini M L. Epicuticular waxes of glaucous and nonglaucous durum wheat lines. J Agric Food Chem, 1986, 34:429-433. |
[26] | Chen G, Komatsuda T, Ma J F, Nawrath C, Pourkheirandish M, Tagiri A, Hu Y G, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Nair S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci USA, 2011, 108:12354-12359. |
[27] | Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140:176-183. |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[14] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[15] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323. |
|