欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2125-2133.doi: 10.3724/SP.J.1006.2022.12052

• 研究简报 • 上一篇    

水稻细长秆突变体sr10的鉴定与基因定位

委刚1(), 陈单阳1(), 任德勇2(), 杨宏霞1, 伍靖雯1, 冯萍1, 王楠1,*()   

  1. 1西南大学水稻研究所 / 转基因作物应用与安全控制重点实验室, 重庆 400715
    2中国水稻研究所 / 农业农村部水稻生物学与育种重点实验室 / 水稻生物学国家重点实验室, 浙江杭州 310006
  • 收稿日期:2021-07-26 接受日期:2021-11-30 出版日期:2022-08-12 网络出版日期:2021-12-22
  • 通讯作者: 王楠
  • 作者简介:委刚, E-mail: 1345433221@qq.com;
    陈单阳, E-mail: cdyccdy@163.com;
    任德勇, E-mail: rendeyong616@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31771750)

Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.)

WEI Gang1(), CHEN Dan-Yang1(), REN De-Yong2(), YANG Hong-Xia1, WU Jing-Wen1, FENG Ping1, WANG Nan1,*()   

  1. 1Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    2State Key Laboratory of Rice Biology / Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs / China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
  • Received:2021-07-26 Accepted:2021-11-30 Published:2022-08-12 Published online:2021-12-22
  • Contact: WANG Nan
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31771750)

摘要:

本研究报道的突变体sr10 (slender rice 10)是由籼稻保持系西农1B经甲酰磺酸乙酯(EMS)诱变而成, 表现为茎细长, 雄性不育。细胞学观察显示, sr10细胞变长, 维管束变少。冷冻切片和叶绿素含量测定表明, sr10的叶绿素含量大幅下降, 导致光合速率下降, 但气孔导度的降低可能提高其抗旱性。通过激素含量测定发现, sr10中IAA和GA3水平显著升高, 而ABA含量显著降低。qRT-PCR分析表明, GAs通路相关基因表达下调, IAA通路相关基因表达异常。遗传分析表明, sr10的突变表型受单个隐性核基因控制。SR10定位于3号染色体的分子标记LIND12和28.5~4之间的175.7 kb的区域内。本研究结果为SR10的克隆和功能分析奠定了基础。

关键词: 水稻(Oryza sativa L.), 基因定位, 株高, 分蘖, 雄性不育, 激素

Abstract:

The mutant sr10 (slender rice 10) reported in this study was obtained by ethyl methanesulfonate (EMS) from Xinong 1B, an indica maintainer line and it was slender stems and male sterility. Cytological observation indicated that the size of mutant cells became longer while the number of vascular bundles was less than wild type. The frozen section and chlorophyll content measurement manifested that the chlorophyll content of sr10 decreased greatly, resulting in the decreased photosynthetic rate, but the falling of stomatal conductance might improve its drought resistance. The levels of IAA and GA3 were significantly increased, while the content of ABA was sharply decreased in sr10. QRT-PCR analysis manifested that some genes involved in GAs pathway were down-regulated and some of IAA pathway related genes were abnormal. Genetic analysis suggested that the mutant phenotype of sr10 was controlled by a single recessive nuclear gene. The SR10 was located at a 175.7 kb interval between the molecular markers LIND12 and 28.5-4 on chromosome 3. These results laid a foundation for cloning and functional analysis of SR10.

Key words: rice (Oryza sativa L.), gene mapping, plant height, tillering, male sterility, hormone

表S1

本研究所设计的分子标记"

标记
Marker
正向序列
Forward primer(5'→3')
反向序列
Reverse primer(5'→3')
ZTQ67 CATGTTCCAAGTATTCCTGGG CGAATGCTAGTGCCCTAGCT
LIND16 TGCGTGACAACAGATACAGGATACA TGAAATGTTAGCGATTCCTCTTTCG
LIND24 TTTGGGAGTCGCTGCACTACA GCGCAAGGGCAAATTTCTA
F41-54 CTGCTTCTGTCGCCACCG GATTCCTTGGTCGCCTGCC
LIND12 TAGGCCCTGCAAACTTGTTTAATAG CCTGCTCGTAGTTATGAGTGCTTG
28.5-4 GAGGATGAACTTCACTTACCCTCAAAG GCAGCGAGACTAGAAACTACTCCTCC
RM186 TCCTCCATCTCCTCCGCTCCCG GACGAAGAAGGCCACCACGCCC

表S2

本研究所用的qRT-PCR引物"

引物
Primer
正向序列
Forward primer(5'→3')
反向序列
Reverse primer(5'→3')
OsActin ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT
OsIAA3 GACGCAGCAGAAGGAGGAT GACGTCCCATTCGAGATGTT
OsIAA6 CCAATTCGATCCTTCAGGAG CACAGCAAGGTGCAGATGAC
OsIAA10 GGTTGCTGGATGGGTGAAGG CCAGCTCACCTACGAGGACAGG
OsIAA11 GCGCTGGTGAAGGTGAGCAT AGAGATGACCTGGAGTACGT
iaa21 GAAGGCACAGGTGGTAGGATG GGTGAATCAAATGGGAAGTCAGG
OsIAA23 GTACCTGCGCAAGGTGGAC GTTCGTCGAGTCCTGCAAG
OsSAUR39 TACAGCTGATGGAGAGCGATT TTGGATTCACAGGTGAGGAAA
OsPIN3t CGGCTCTACCACAAGGGATTG TGTACTACATCCTTCTTGGACTATGA
OsTIR1 ATTACATCCTCTCAGGCTGC CATGAACGATCCTGGAAGGT
GA2ox1 ACCACTACCCTCCATCATGCAACA AGGCTAGCAATGGTGGGAATCTGA
GA2ox4 CTGCAGGTGATGACGAACGG TGGAGCAGAGGATCGCGCCGCT
GA3ox2 CGCCTCTGGCCCAAGT GAGTTGCTGAGGTTGTTCTTGAG
GA20ox2 GCCAATGGGGAGGGTGT TGTCGCTGACGATCATGG
SLR1 TGCCCGCCATGCTTCCAC GCTGACCCGTCGGCTGCT

图1

sr10的表型鉴定 a1~a6: 4~60 d的WT和sr10的表型观察, 标尺分别为17.5、41、69.2、102、191和309 mm; b: 4~60 d的WT和sr10的株高; c: 4~60 d的WT和sr10的根长; d: 成熟期WT和sr10的叶长; e: 成熟期WT和sr10的叶宽; f: WT和sr10的分蘖数; First: 倒一叶; Second: 倒二叶; Third: 倒三叶; *: P < 0.05; **: P < 0.01。"

图2

sr10的细胞学观察 a: WT的叶片上表皮, 标尺为35 μm; b: sr10的叶片上表皮, 标尺为35 μm; c: WT的叶片下表皮, 标尺为35 μm; d: sr10的叶片的下表皮, 标尺为35 μm; e: WT的鞘外壁, 标尺为35 μm; f: sr10的鞘外壁, 标尺为35 μm; g: WT的鞘内壁, 标尺为35 μm; h: sr10的鞘内壁, 标尺为35 μm; i: WT与sr10的倒一节间横截面, 标尺为1.1 mm; j: WT和sr10的维管束数目; 白色箭头用于指示保卫细胞, 红色箭头用于指示细胞长度, 红色椭圆用于指示维管束; **: P < 0.01。"

图3

sr10的育性鉴定 a: WT和sr10的小穗, 标尺为2.1 mm; b, c: WT和sr10的花药, 标尺为2.8 mm (b)和3.5 mm (c); d: WT的花粉I2-KI染色, 标尺为115 μm; e: sr10的花粉I2-KI染色, 标尺为115 μm; f: WT和sr10的花粉育性统计; g: WT和sr10的结实率; **: P < 0.01。"

图4

sr10的叶绿素含量和光合指标的测定 a: WT和sr10叶片的冷冻切片和荧光观察, Bar: 26 μm; b: 叶绿素a含量; c: 叶绿素b含量; d: 总叶绿素含量; e: 类胡萝卜素含量; f: 净光合速率(Pn); g: 气孔导度(Gs); h: 细胞间CO2浓度(Ci); i: 蒸腾速率(Tr); First: 倒一叶; Second: 倒二叶; Third: 倒三叶; *: P < 0.05; **: P < 0.01。"

表S3

ssr1的遗传分析"

组合
Combinations
F1代表型
F1 phenotype
F2代表型
F2 population numbers
野生型数
WT numbers
突变体数
Mutant numbers
分离比
Separation ratio
J10/ sr10 正常normal 4005 3015 990 χ2=0.909<χ20.05,1=3.84

图5

水稻3号染色体上SR10的分子定位 N = 229: 用于初定位的F2隐性群体; n = 990: 用于精细定位的F2隐性群体。"

表S4

定位区间内的注释基因"

基因编号
Locus name
基因注释
Gene annotation
LOC_Os03g49830 expressed protein
LOC_Os03g49840 hypothetical protein
LOC_Os03g49850 hypothetical protein
LOC_Os03g49860 expressed protein
LOC_Os03g49870 transposon protein, putative, Mariner sub-class, expressed
LOC_Os03g49880 TCP family transcription factor
LOC_Os03g49890 hypothetical protein
LOC_Os03g49900 zinc finger, C3HC4 type domain containing protein, expressed
LOC_Os03g49910 retrotransposon protein, putative, Ty1-copia subclass, expressed
LOC_Os03g49920 expressed protein
LOC_Os03g49930 pentatricopeptide, putative, expressed
LOC_Os03g49940 integral membrane protein, putative, expressed
LOC_Os03g49960 expressed protein
LOC_Os03g49970 expressed protein
LOC_Os03g49980 retrotransposon protein, putative, unclassified, expressed
LOC_Os03g49990 slender rice 1, GRAS-domain protein
LOC_Os03g50010 toc64, putative, expressed
LOC_Os03g50020 retrotransposon, putative, centromere-specific
LOC_Os03g50030 phospholipase A2, putative, expressed
LOC_Os03g50040 phytanoyl-CoA dioxygenase, putative, expressed

图6

sr10中激素含量的测定及相关基因的表达分析"

[1] Liu X B, Wei X J, Sheng Z H, Jiao G A, Tang S Q, Luo L, Hu P S, Wang T. Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS One, 2016, 11: e0164748.
doi: 10.1371/journal.pone.0164748
[2] Liu J, Shen J, Xu Y, Li X, Xiong L. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016, 67: 5785-5798.
doi: 10.1093/jxb/erw344
[3] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2009, 40: 761-767.
doi: 10.1038/ng.143
[4] Na J K, Huh S M, Yoon I S, Byun M O, Lee Y H, Lee K O, Kim D Y. Rice LIM protein OsPLIM2a is involved in rice seed and tiller development. Mol Breed, 2014, 34: 569-581.
doi: 10.1007/s11032-014-0058-7
[5] Liao Z, Yu H, Duan J, Yuan K, Li J. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738.
doi: 10.1038/s41467-019-10667-2
[6] Wang Y J, Zhao J, Lu W J, Deng D X. Gibberellin in plant height control: old player, new story. Plant Cell Rep, 2017, 36: 391-398.
doi: 10.1007/s00299-017-2104-5
[7] Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep, 2014, 33: 235-244.
doi: 10.1007/s00299-013-1524-0
[8] Jiang L, Guo L, Jiang H, Zeng D, Hu J, Wu L, Liu J, Gao Z, Qian Q. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. J Genet Genomics, 2008, 35: 715-721.
doi: 10.1016/S1673-8527(08)60226-X
[9] Piao R, Chu S H, Jiang W, Yu Y, Jin Y, Woo M O, Lee J, Kim S, Koh H J. Isolation and characterization of a dominant dwarf gene, D-h, in rice. PLoS One, 2014, 9: e86210.
doi: 10.1371/journal.pone.0086210
[10] Wang W, Li G, Zhao J, Chu H, Lin W, Zhang D, Wang Z, Liang W. DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet, 2014, 10: e1004154.
doi: 10.1371/journal.pgen.1004154
[11] 汤日圣, 梅传生, 张金渝, 蔡小宁, 吴光南. TO3诱导水稻雄性不育与内源激素的关系. 江苏农业学报, 1996, 12(2): 6-10.
Tang R S, Meng C S, Zhang J Y, Cai X N, Wu G N. Relationship between rice male sterility induction by TO3 and level of endogenous hormones. Jiangsu J Agric, 1996, 12(2): 6-10. (in Chinese with English abstract)
[12] Ren D, Cui Y, Hu H, Xu Q, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.14481
[13] Zhu M, Chen X L, Zhu X Y, Xing Y D, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5
[14] Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307-313.
doi: 10.1016/S0176-1617(11)81192-2
[15] Rogers S, Bendich A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[16] Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.). Rice, 2016, 9: 4.
doi: 10.1186/s12284-016-0076-7
[17] Michelmore R, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828
[18] Xing Y D, Du D, Xiao Y, Zhang T, Chen X, Ping F, Sang X C, Nan W, He G. Fine mapping of a new lesion mimic and Early Senescence 2 (lmes2) mutant in rice. Crop Sci, 2016, 56: 1550-1560.
doi: 10.2135/cropsci2015.09.0541
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408.
doi: 10.1006/meth.2001.1262
[20] Liu W, Zhang D, Tang M, Li D, Zhu Y, Zhu L, Chen C. THIS 1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. J Exp Bot, 2013, 64: 4389-4402.
doi: 10.1093/jxb/ert256
[21] Lisa M, Noriyuki K, Rika Y, Junko S, Haruka M, Yumiko M, Masao T, Mizuho S, Shinobu N, Yuzo M. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-17.
doi: 10.1093/dnares/9.1.11
[22] Li S, Gao J, Li J, Wang Y. Advances in regulating rice tillers by strigolactones. Chin Sci Bull, 2015, 50: 539-548.
[23] Ding Z, Lin Z, Li Q, Wu H, Xiang C, Wang J. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun, 2015, 457: 133-140.
doi: 10.1016/j.bbrc.2014.12.034
[24] Zhang P P, Zhang Y X, Sun L P, Sinumporn S, Yang Z F, Sun B, Xuan D D, Li Z H, Yu P, Wu W X, Wang K J, Cao L Y, Cheng S H. The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Front Plant Sci, 2017, 8: 1639.
doi: 10.3389/fpls.2017.01639
[25] Tadashi S, Susumu O, Yuta T, Hikaru S, Makiko K K. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol, 2014, 164: 2011-2019.
doi: 10.1104/pp.113.234401 pmid: 24569847
[26] Wang L, Wang Z, Xu Y, Joo S H, Kang C. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2008, 57: 498-510.
doi: 10.1111/j.1365-313X.2008.03707.x
[27] Kensuke K, Shoko H, Toshiharu K, Koh I. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot, 2012, 63: 5635-5644.
doi: 10.1093/jxb/ers216 pmid: 22915747
[28] Micol J L. Leaf development: time to turn over a new leaf? Curr Opin Plant Biol, 2009, 12: 9-16.
doi: 10.1016/j.pbi.2008.11.001 pmid: 19109050
[29] Wang Y F, Zhang J H, Shi X L, Peng Y, Li P, Lin D Z, Dong Y J, Teng S. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot, 2016, 67: 5187-5202.
doi: 10.1093/jxb/erw287
[30] Zhang Y, Wang X, Luo Y, Zhang L, Li Y. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J, 2019, 8: 480-491.
doi: 10.1016/j.cj.2019.08.006
[31] Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K, Khurana J P. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa L.). Funct Integr Genomics, 2006, 6: 47-59.
doi: 10.1007/s10142-005-0005-0
[32] Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J, 2010, 46: 297-306.
doi: 10.1111/j.1365-313X.2006.02693.x
[33] Ni J, Wang G, Zhu Z, Zhang H, Wu Y, Ping W. OsIAA23- mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J Cell Mol Biol, 2011, 68: 433-442.
doi: 10.1111/j.1365-313X.2011.04698.x
[34] Kant S, Bi Y M, Tong Z. SAUR39, a Small Auxin-Up RNA Gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Signal Behav, 2009, 151: 691-701.
[35] Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J, 2012, 72: 805-816.
doi: 10.1111/j.1365-313X.2012.05121.x
[36] Zhang L, Feng P, Deng Y, Yin W, Wang N. Decreased Vascular Bundle 1 affects mitochondrial and plant development in rice. Rice, 2021, 14: 13.
doi: 10.1186/s12284-021-00454-3
[37] Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun, 2015, 6: 7395.
doi: 10.1038/ncomms8395
[38] Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog, 2016, 12: e1005847.
doi: 10.1371/journal.ppat.1005847
[39] Bian H, Xie Y, Guo F, Ning H, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice. New Phytol, 2012, 196: 149-161.
doi: 10.1111/j.1469-8137.2012.04248.x
[40] Xia K F, Wang R, Ou X J, Fang Z M, Tian C G, Duan J, Wang Y Q, Zhang M Y. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7: e30039.
doi: 10.1371/journal.pone.0030039
[41] Li X, Xia K, Liang Z, Chen K, Gao C, Zhang M. MicroRNA 393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep, 2016, 6: 32158.
doi: 10.1038/srep32158
[42] Lo S F, Yang S Y, Chen K T, Hsing Y I, Zeevaart J, Chen L J, Yu S M. A novel class of Gibberellin 2-Oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20: 2603-2618.
doi: 10.1105/tpc.108.060913
[43] Sakamoto T. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol, 2001, 125: 1508-1516.
pmid: 11244129
[44] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909-8914.
doi: 10.1073/pnas.141239398
[45] Takeshi K, Keisuke N, Rico G, Diane R W, Tomoyuki F, Masanari N, Takuya K, Keita A, Anzu M, Yoshinao M, Kiyoshi M, Yoshiya S, Shinjiro Y, Mikiko K, Hitoshi S, Wu J Z, Kaworu E, Nobutaka M, Masaru O T, Shuichi Y, Masanori Y, Ryusuke Y, Kazuhiko N, Toshihiro M, Gen T, Susan R M, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361: 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253
[46] Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2010, 33: 513-520.
doi: 10.1046/j.1365-313X.2003.01648.x
[47] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Yamaguchi M J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/ D8. Plant Cell, 2001, 13: 999-1010.
pmid: 11340177
[48] Akira I, Yutaka S, Paolo V, Pierdomenico P, Hirohiko H. The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol, 2002, 43: 974-979.
pmid: 12354914
[1] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[2] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[3] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[4] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[5] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[6] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[11] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[12] 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426.
[13] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[14] 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174.
[15] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .