作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2125-2133.doi: 10.3724/SP.J.1006.2022.12052
• 研究简报 • 上一篇
委刚1(), 陈单阳1(), 任德勇2(), 杨宏霞1, 伍靖雯1, 冯萍1, 王楠1,*()
WEI Gang1(), CHEN Dan-Yang1(), REN De-Yong2(), YANG Hong-Xia1, WU Jing-Wen1, FENG Ping1, WANG Nan1,*()
摘要:
本研究报道的突变体sr10 (slender rice 10)是由籼稻保持系西农1B经甲酰磺酸乙酯(EMS)诱变而成, 表现为茎细长, 雄性不育。细胞学观察显示, sr10细胞变长, 维管束变少。冷冻切片和叶绿素含量测定表明, sr10的叶绿素含量大幅下降, 导致光合速率下降, 但气孔导度的降低可能提高其抗旱性。通过激素含量测定发现, sr10中IAA和GA3水平显著升高, 而ABA含量显著降低。qRT-PCR分析表明, GAs通路相关基因表达下调, IAA通路相关基因表达异常。遗传分析表明, sr10的突变表型受单个隐性核基因控制。SR10定位于3号染色体的分子标记LIND12和28.5~4之间的175.7 kb的区域内。本研究结果为SR10的克隆和功能分析奠定了基础。
[1] |
Liu X B, Wei X J, Sheng Z H, Jiao G A, Tang S Q, Luo L, Hu P S, Wang T. Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS One, 2016, 11: e0164748.
doi: 10.1371/journal.pone.0164748 |
[2] |
Liu J, Shen J, Xu Y, Li X, Xiong L. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016, 67: 5785-5798.
doi: 10.1093/jxb/erw344 |
[3] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2009, 40: 761-767.
doi: 10.1038/ng.143 |
[4] |
Na J K, Huh S M, Yoon I S, Byun M O, Lee Y H, Lee K O, Kim D Y. Rice LIM protein OsPLIM2a is involved in rice seed and tiller development. Mol Breed, 2014, 34: 569-581.
doi: 10.1007/s11032-014-0058-7 |
[5] |
Liao Z, Yu H, Duan J, Yuan K, Li J. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738.
doi: 10.1038/s41467-019-10667-2 |
[6] |
Wang Y J, Zhao J, Lu W J, Deng D X. Gibberellin in plant height control: old player, new story. Plant Cell Rep, 2017, 36: 391-398.
doi: 10.1007/s00299-017-2104-5 |
[7] |
Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep, 2014, 33: 235-244.
doi: 10.1007/s00299-013-1524-0 |
[8] |
Jiang L, Guo L, Jiang H, Zeng D, Hu J, Wu L, Liu J, Gao Z, Qian Q. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. J Genet Genomics, 2008, 35: 715-721.
doi: 10.1016/S1673-8527(08)60226-X |
[9] |
Piao R, Chu S H, Jiang W, Yu Y, Jin Y, Woo M O, Lee J, Kim S, Koh H J. Isolation and characterization of a dominant dwarf gene, D-h, in rice. PLoS One, 2014, 9: e86210.
doi: 10.1371/journal.pone.0086210 |
[10] |
Wang W, Li G, Zhao J, Chu H, Lin W, Zhang D, Wang Z, Liang W. DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet, 2014, 10: e1004154.
doi: 10.1371/journal.pgen.1004154 |
[11] | 汤日圣, 梅传生, 张金渝, 蔡小宁, 吴光南. TO3诱导水稻雄性不育与内源激素的关系. 江苏农业学报, 1996, 12(2): 6-10. |
Tang R S, Meng C S, Zhang J Y, Cai X N, Wu G N. Relationship between rice male sterility induction by TO3 and level of endogenous hormones. Jiangsu J Agric, 1996, 12(2): 6-10. (in Chinese with English abstract) | |
[12] |
Ren D, Cui Y, Hu H, Xu Q, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.14481 |
[13] |
Zhu M, Chen X L, Zhu X Y, Xing Y D, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5 |
[14] |
Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307-313.
doi: 10.1016/S0176-1617(11)81192-2 |
[15] |
Rogers S, Bendich A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565 |
[16] |
Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.). Rice, 2016, 9: 4.
doi: 10.1186/s12284-016-0076-7 |
[17] |
Michelmore R, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 |
[18] |
Xing Y D, Du D, Xiao Y, Zhang T, Chen X, Ping F, Sang X C, Nan W, He G. Fine mapping of a new lesion mimic and Early Senescence 2 (lmes2) mutant in rice. Crop Sci, 2016, 56: 1550-1560.
doi: 10.2135/cropsci2015.09.0541 |
[19] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[20] |
Liu W, Zhang D, Tang M, Li D, Zhu Y, Zhu L, Chen C. THIS 1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. J Exp Bot, 2013, 64: 4389-4402.
doi: 10.1093/jxb/ert256 |
[21] |
Lisa M, Noriyuki K, Rika Y, Junko S, Haruka M, Yumiko M, Masao T, Mizuho S, Shinobu N, Yuzo M. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-17.
doi: 10.1093/dnares/9.1.11 |
[22] | Li S, Gao J, Li J, Wang Y. Advances in regulating rice tillers by strigolactones. Chin Sci Bull, 2015, 50: 539-548. |
[23] |
Ding Z, Lin Z, Li Q, Wu H, Xiang C, Wang J. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun, 2015, 457: 133-140.
doi: 10.1016/j.bbrc.2014.12.034 |
[24] |
Zhang P P, Zhang Y X, Sun L P, Sinumporn S, Yang Z F, Sun B, Xuan D D, Li Z H, Yu P, Wu W X, Wang K J, Cao L Y, Cheng S H. The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Front Plant Sci, 2017, 8: 1639.
doi: 10.3389/fpls.2017.01639 |
[25] |
Tadashi S, Susumu O, Yuta T, Hikaru S, Makiko K K. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol, 2014, 164: 2011-2019.
doi: 10.1104/pp.113.234401 pmid: 24569847 |
[26] |
Wang L, Wang Z, Xu Y, Joo S H, Kang C. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2008, 57: 498-510.
doi: 10.1111/j.1365-313X.2008.03707.x |
[27] |
Kensuke K, Shoko H, Toshiharu K, Koh I. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot, 2012, 63: 5635-5644.
doi: 10.1093/jxb/ers216 pmid: 22915747 |
[28] |
Micol J L. Leaf development: time to turn over a new leaf? Curr Opin Plant Biol, 2009, 12: 9-16.
doi: 10.1016/j.pbi.2008.11.001 pmid: 19109050 |
[29] |
Wang Y F, Zhang J H, Shi X L, Peng Y, Li P, Lin D Z, Dong Y J, Teng S. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot, 2016, 67: 5187-5202.
doi: 10.1093/jxb/erw287 |
[30] |
Zhang Y, Wang X, Luo Y, Zhang L, Li Y. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J, 2019, 8: 480-491.
doi: 10.1016/j.cj.2019.08.006 |
[31] |
Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K, Khurana J P. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa L.). Funct Integr Genomics, 2006, 6: 47-59.
doi: 10.1007/s10142-005-0005-0 |
[32] |
Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J, 2010, 46: 297-306.
doi: 10.1111/j.1365-313X.2006.02693.x |
[33] |
Ni J, Wang G, Zhu Z, Zhang H, Wu Y, Ping W. OsIAA23- mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J Cell Mol Biol, 2011, 68: 433-442.
doi: 10.1111/j.1365-313X.2011.04698.x |
[34] | Kant S, Bi Y M, Tong Z. SAUR39, a Small Auxin-Up RNA Gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Signal Behav, 2009, 151: 691-701. |
[35] |
Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J, 2012, 72: 805-816.
doi: 10.1111/j.1365-313X.2012.05121.x |
[36] |
Zhang L, Feng P, Deng Y, Yin W, Wang N. Decreased Vascular Bundle 1 affects mitochondrial and plant development in rice. Rice, 2021, 14: 13.
doi: 10.1186/s12284-021-00454-3 |
[37] |
Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun, 2015, 6: 7395.
doi: 10.1038/ncomms8395 |
[38] |
Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog, 2016, 12: e1005847.
doi: 10.1371/journal.ppat.1005847 |
[39] |
Bian H, Xie Y, Guo F, Ning H, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice. New Phytol, 2012, 196: 149-161.
doi: 10.1111/j.1469-8137.2012.04248.x |
[40] |
Xia K F, Wang R, Ou X J, Fang Z M, Tian C G, Duan J, Wang Y Q, Zhang M Y. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7: e30039.
doi: 10.1371/journal.pone.0030039 |
[41] |
Li X, Xia K, Liang Z, Chen K, Gao C, Zhang M. MicroRNA 393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep, 2016, 6: 32158.
doi: 10.1038/srep32158 |
[42] |
Lo S F, Yang S Y, Chen K T, Hsing Y I, Zeevaart J, Chen L J, Yu S M. A novel class of Gibberellin 2-Oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20: 2603-2618.
doi: 10.1105/tpc.108.060913 |
[43] |
Sakamoto T. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol, 2001, 125: 1508-1516.
pmid: 11244129 |
[44] |
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909-8914.
doi: 10.1073/pnas.141239398 |
[45] |
Takeshi K, Keisuke N, Rico G, Diane R W, Tomoyuki F, Masanari N, Takuya K, Keita A, Anzu M, Yoshinao M, Kiyoshi M, Yoshiya S, Shinjiro Y, Mikiko K, Hitoshi S, Wu J Z, Kaworu E, Nobutaka M, Masaru O T, Shuichi Y, Masanori Y, Ryusuke Y, Kazuhiko N, Toshihiro M, Gen T, Susan R M, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361: 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253 |
[46] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2010, 33: 513-520.
doi: 10.1046/j.1365-313X.2003.01648.x |
[47] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Yamaguchi M J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/ D8. Plant Cell, 2001, 13: 999-1010.
pmid: 11340177 |
[48] |
Akira I, Yutaka S, Paolo V, Pierdomenico P, Hirohiko H. The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol, 2002, 43: 974-979.
pmid: 12354914 |
[1] | 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376. |
[2] | 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913. |
[3] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[4] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
[5] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[6] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[7] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[8] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[11] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
[12] | 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426. |
[13] | 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053. |
[14] | 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174. |
[15] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
|