作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2100-2114.doi: 10.3724/SP.J.1006.2022.14110
GUO Jia-Xin(), LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei*()
摘要:
阐明植物盐碱胁迫下的代谢机制将有助于进一步优化育种和栽培, 从而提高盐碱地作物产量。本研究采用液相色谱-质谱(LC-MS), 对中性盐和碱性盐胁迫下棉花叶片代谢产物进行研究, 分析棉花在盐碱胁迫下的代谢差异。结果显示, 盐胁迫下棉花叶片中糖类在正负离子模式下分别有7种和2种上调, 氨基酸类各有3种上调, 有机酸类分别有12种和8种上调; 碱胁迫下棉花叶片中的糖类分别有3种和5种上调, 有机酸类分别有2种和9种上调, 氨基酸类各有2种上调。盐胁迫下发现10条差异代谢通路, 变化最明显的代谢通路是亚油酸代谢, 其次是淀粉和蔗糖代谢与精氨酸生物合成; 碱胁迫下发现5条差异代谢通路, 变化最明显的代谢通路是色氨酸代谢, 其次是精氨酸和脯氨酸代谢与柠檬酸循环(TCA循环)。棉花采取不同的代谢机制抵抗盐碱胁迫, 盐胁迫更倾向于积累糖类, 碱胁迫更倾向于积累有机酸; 在能量代谢方面, 盐胁迫下棉花淀粉和蔗糖代谢更加活跃, 碱胁迫下TCA循环更加活跃; 盐胁迫提高了棉花氮素同化能力, 碱胁迫降低了氮的同化能力。
[1] | Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 2005, 1012: 615-620. |
[2] |
Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genomic, 2011, 11: 369-379.
doi: 10.1007/s10142-010-0191-2 |
[3] |
Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via solexa sequencing. Acta Physiol Plant, 2012, 34: 107-115.
doi: 10.1007/s11738-011-0809-6 |
[4] |
廖欢, 侯振安. 盐碱胁迫对不同棉花品种生长及离子组含量分布的影响. 新疆农业科学, 2020, 57: 219-232.
doi: 10.6048/j.issn.1001-4330.2020.02.003 |
Liao H, Hou Z A. Effects of salt-alkali stress on the growth and ion group content distribution of different cotton varieties. Xinjiang Agric Sci, 2020, 57: 219-232. (in Chinese with English abstract) | |
[5] | Li Y Y, Zhao K, Ren J H, Ding Y L, Wu L L, Catherine O. Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in western Jilin province using RADARSAT2 data. Sci World J, 2014, 56: 30-45. |
[6] |
Ashraf J, Zou D Y, Wang D Y, Malik W, Zhang Y P, Abid M A, Cheng H L, Yang Q H, Song G L. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J, 2018, 16: 699-713.
doi: 10.1111/pbi.12856 |
[7] |
Harris M A. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2003, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024 |
[8] |
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar et cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5 |
[9] |
de Lacerda C F, Cambraia J, Oliva M A, Ruiz H A, Prisco J T. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot, 2003, 49: 107-120.
doi: 10.1016/S0098-8472(02)00064-3 |
[10] |
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[11] |
Yang C, Xu H H, Wang L, Liu J, Shi D C, Wang D L. Comparative effects of salt-stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8 |
[12] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[13] |
Ahmad P, Jaleel C A, Salem M A, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in pants during abiotic stress. Crit Rev Biotechnol, 2010, 30: 161-175.
doi: 10.3109/07388550903524243 |
[14] | Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 592: 206-216. |
[15] |
Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234: 1007-1018.
doi: 10.1007/s00425-011-1458-0 |
[16] |
Leshem Y, Melamed B N, Cagnac O, Ronen G, Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA, 2006, 103: 18008-18013.
doi: 10.1073/pnas.0604421103 |
[17] |
Bino R J, Hall R D, Fiehn O, Kopka J, Saito K, Draper J, Nikolau B J, Mendes P, Roessner-Tunali U, Beale M H. Potential of metabolomics as a functional genomics tool. Trends Plant Sci, 2004, 9: 418-425.
doi: 10.1016/j.tplants.2004.07.004 |
[18] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[19] |
Ma S Q, Lyu L, Meng C, Zhang C S, Li Y Q. Integrative analysis of the and transcriptome of sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline-alkali stress. J Agric Food Chem, 2020, 68: 14781-14789.
doi: 10.1021/acs.jafc.0c06249 |
[20] |
Gui G, Lyu C H, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci, 2019, 20: 5910-5928.
doi: 10.3390/ijms20235910 |
[21] |
Guo R, Shi L X, Yan C R, Zhong X, Gu F X, Liu Q, Xia X, Li H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol, 2017, 17: 41-53.
doi: 10.1186/s12870-017-0994-6 |
[22] |
Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol, 2015, 15: 170-182.
doi: 10.1186/s12870-015-0546-x |
[23] |
Ampofo-Asiama J, Baiye V M M, Hertog M L A T M, Waelkens E, Geeraerd A H, Nicolai B M. The metabolic response of cultured tomato cells to low oxygen stress. Plant Biol, 2014, 16: 594-606.
doi: 10.1111/plb.12094 |
[24] |
Kim J K, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-coursemetabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot, 2006, 58: 415-424.
doi: 10.1093/jxb/erl216 |
[25] |
Rizhsky L, Liang H J, Shuman J, Shulaev V, Davletova S. When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696.
doi: 10.1104/pp.103.033431 |
[26] |
Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
doi: 10.1007/s004250050524 |
[27] |
Abbas G, Saqib M, Akhtar J, Haq M A U. Interactive effects of salinity and iron deficiency on different rice genotypes. J Plant Nutr Soil Sci, 2015, 178: 306-311.
doi: 10.1002/jpln.201400358 |
[28] |
Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[29] |
Lokhande V H, Nikam T D, Patade V Y, Ahire M L, Suprasanna P. Efects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult, 2011, 104: 41-49.
doi: 10.1007/s11240-010-9802-9 |
[30] | 孙叶烁, 张国新, 丁守鹏, 姚玉涛, 丁冯洁. 盐胁迫对樱桃番茄风味品质的影响. 核农学报, 2022, 36: 838-844. |
Sun Y S, Zhang G X, Ding S P, Yao Y T, Ding F J. Effects of salt stress on flavor compounds of cherry tomato fruits. J Nucl Agric Sci, 2022, 36: 838-844. (in Chinese with English abstract) | |
[31] |
Hare P D, Cress W A, Staden J V. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 1998, 21: 535-553.
doi: 10.1046/j.1365-3040.1998.00309.x |
[32] |
Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 2011, 20: 1422-1431.
doi: 10.1007/s10646-011-0699-9 |
[33] |
Gagneul D, Aïnouche A, Duhaze C. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol, 2007, 144: 1598-1611.
pmid: 17468212 |
[34] | Brosché M, Vinocur B, Alatalo E R, Lamminmäki A, Teichmann T, Ottow E A, Djilianov D, Afif D, Bogeat-Triboulot M B, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6: 681-689. |
[35] |
Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot, 2015, 115: 433-447.
doi: 10.1093/aob/mcu239 |
[36] |
Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
doi: 10.1146/annurev.arplant.51.1.463 |
[37] |
Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes. Ann Bot, 2015, 115: 327-331.
doi: 10.1093/aob/mcu267 |
[38] | Wang Y, Stevanato P, Yu L, Zhao H J, Sun X W, Sun F, Li J, Geng G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J Plant Res, 2017, 1306: 1079-1093. |
[39] | Fougère F, Rudulier D L, Streeter J G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, Bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol, 1991, 964: 1228-1236. |
[40] | Kaplan F, Kopka J, Haskell D W, Wei Z, Schiller K C, Gatzke N, Sun D Y, Charles L G. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol, 2004, 1364: 4159-4168. |
[41] | Rosa M, Prado C, Podazza G, Interdonato R, Pardo F E. Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav, 2009, 4: 383-393. |
[42] |
Yang Y. Guo Y. Elucidating the molecular mechanisms mediating plant saltstress responses. New Phytol, 2018, 217: 523-539.
doi: 10.1111/nph.14920 |
[43] |
Singh M, Kumar J, Singh S, Singh V P, Prasad S M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol, 2015, 14: 407-426.
doi: 10.1007/s11157-015-9372-8 |
[44] | Wang L, Li G, Wei S, Li L, Li J. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica, 2019, 571: 286-294. |
[45] | Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330. |
[46] |
Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot, 2007, 58: 2339-2358.
doi: 10.1093/jxb/erm121 |
[47] |
Kirma M, Araujo W L, Fernie A R, Galili G. The multifaceted role of aspartate-family amino acids in plant metabolism. J Exp Bot, 2012, 63: 4995-5001.
doi: 10.1093/jxb/ers119 |
[48] |
Wang H, Ahan J, Wu Z H, Shi D C, Liu B, Yang C W. Alteration of nitrogen metabolism in rice variety ‘Nipponbare' induced by alkali stress. Plant Soil, 2012; 355: 131-147.
doi: 10.1007/s11104-011-1086-2 |
[49] |
Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci, 1998, 3: 389-395.
doi: 10.1016/S1360-1385(98)01311-9 |
[50] |
Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkaline resistant halophyte Kochia sieversiana during adaptation to saline and alkaline conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[51] |
Yang C W, Xu H H, Wang L L, Liu J, Shi D C, Wang D L. Comparative effects of salt stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8 |
[52] |
Ma B, Chen J, Zheng H Y, Fang T, Ogutu C, Li S H, Han Y P, Wu B H. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem, 2015, 172: 86-91.
doi: 10.1016/j.foodchem.2014.09.032 |
[53] |
Chen W C, Cui P J, Sun H Y, Guo W Q, Yang C W, Jin H, Fang B, Shi D C. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind Crops Prod, 2009, 30: 351-358.
doi: 10.1016/j.indcrop.2009.06.007 |
[54] |
Fu H J, Yu H Y, Li T X, Wu Y. Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf, 2019, 168: 330-337.
doi: 10.1016/j.ecoenv.2018.10.023 |
[55] |
Zhou L, Yu J, Yan P, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant, 2017, 159: 42-58.
doi: 10.1111/ppl.12483 pmid: 27507681 |
[56] | Baron K, Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell Deve Biol Plant, 2008, 44: 384-395. |
[57] | Bueno M, Cordovilla M P. Polyamines in Halophytes. Front Recent Dev Plant Sci, 2019, 10: 439-445. |
[58] |
辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响. 作物学报, 2021, 47: 2001-2011.
doi: 10.3724/SP.J.1006.2021.04238 |
Xin Z Q, Dai H H, Xin Y F, He X, Xie H Y, Wu N B. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress. Acta Agron Sin, 2021, 47: 2001-2011. (in Chinese with English abstract) |
[1] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[2] | 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273. |
[3] | 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[6] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[7] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[8] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[9] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[10] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[11] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[12] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[13] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[14] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[15] | 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562. |
|