欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2100-2114.doi: 10.3724/SP.J.1006.2022.14110

• 研究简报 • 上一篇    下一篇

棉花在盐碱胁迫下代谢产物及通路的分析

郭家鑫(), 鲁晓宇, 陶一凡, 郭慧娟, 闵伟*()   

  1. 石河子大学农学院, 新疆石河子 832003
  • 收稿日期:2021-06-23 接受日期:2021-10-30 出版日期:2022-08-12 网络出版日期:2021-12-21
  • 通讯作者: 闵伟
  • 作者简介:E-mail: gjx19960323@126.com
  • 基金资助:
    兵团中青年科技创新领军人才计划项目(2020CB020);农业农村部西北绿洲农业环境重点实验室开放基金项目(XBLZ-20214)

Analysis of metabolites and pathways in cotton under salt and alkali stresses

GUO Jia-Xin(), LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei*()   

  1. Agricultural College, Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2021-06-23 Accepted:2021-10-30 Published:2022-08-12 Published online:2021-12-21
  • Contact: MIN Wei
  • Supported by:
    Program of Youth Science and Technology Innovation Leader of the Xinjiang Production and Construction Corps(2020CB020);Open Fund of Key Laboratory of Northwest Oasis Agro-Environment, Ministry of Agriculture and Rural Affairs(XBLZ-20214)

摘要:

阐明植物盐碱胁迫下的代谢机制将有助于进一步优化育种和栽培, 从而提高盐碱地作物产量。本研究采用液相色谱-质谱(LC-MS), 对中性盐和碱性盐胁迫下棉花叶片代谢产物进行研究, 分析棉花在盐碱胁迫下的代谢差异。结果显示, 盐胁迫下棉花叶片中糖类在正负离子模式下分别有7种和2种上调, 氨基酸类各有3种上调, 有机酸类分别有12种和8种上调; 碱胁迫下棉花叶片中的糖类分别有3种和5种上调, 有机酸类分别有2种和9种上调, 氨基酸类各有2种上调。盐胁迫下发现10条差异代谢通路, 变化最明显的代谢通路是亚油酸代谢, 其次是淀粉和蔗糖代谢与精氨酸生物合成; 碱胁迫下发现5条差异代谢通路, 变化最明显的代谢通路是色氨酸代谢, 其次是精氨酸和脯氨酸代谢与柠檬酸循环(TCA循环)。棉花采取不同的代谢机制抵抗盐碱胁迫, 盐胁迫更倾向于积累糖类, 碱胁迫更倾向于积累有机酸; 在能量代谢方面, 盐胁迫下棉花淀粉和蔗糖代谢更加活跃, 碱胁迫下TCA循环更加活跃; 盐胁迫提高了棉花氮素同化能力, 碱胁迫降低了氮的同化能力。

关键词: 棉花, 盐胁迫, 碱胁迫, 代谢组, TCA循环, 有机酸

Abstract:

Elucidating the metabolic mechanism of plants under saline-alkali stress will help to further optimize breeding and cultivation, thereby increasing crop yields in saline-alkali soils. In this study, to analyze the differences in cotton metabolism under salt-alkali stress, liquid chromatography-mass spectrometry (LC-MS) was used to study the metabolites of cotton leaves under neutral salt and alkaline salt stress. The results showed that under salt stress, 7 and 2 types of sugars in cotton leaves were up-regulated in positive and negative ion modes, 3 types of amino acids were up-regulated, and 12 and 8 types of organic acids were up-regulated in cotton leaves under alkali stress. There are three kinds and five kinds of up-regulation in sugars, two kinds and nine kinds of up-regulation in organic acids, and two kinds of up-regulation in amino acids. 10 differential metabolic pathways were detected under salt stress. The most obvious metabolic pathway was linoleic acid metabolism, followed by starch and sucrose metabolism and arginine biosynthesis. Five differential metabolic pathways were found under alkaline stress. The most significant metabolic pathway was tryptophan metabolism, followed by arginine and proline metabolism and citric acid cycle (TCA cycle). Cotton adopts different metabolic mechanisms to resist salt-alkali stress. Salt stress tended to accumulate sugars and alkali stress tended to accumulate organic acids. In terms of energy metabolism, cotton starch and sucrose metabolism was more active under salt stress, and TCA cycle was more active under alkali stress. Salt stress improves the nitrogen assimilation ability of cotton, and alkali stress reduces the nitrogen assimilation ability.

Key words: cotton, salt stress, alkali stress, metabolomics, TCA cycle, organic acids

表1

不同处理土壤盐碱类型及盐碱化程度"

处理
Treatment
盐碱类型及盐碱化程度
Saline and alkaline
含盐量
Salt content (g kg-1)
电导率
EC1:5 (dS m-1)
pH
(1:2.5)
CK 对照-非盐(碱)化 Control-non salting (alkalization) 0.53 0.17 8.16
CS NaCl-中度盐化 NaCl-moderate salinization 4.43 1.39 8.43
AS Na2CO3+NaHCO3-中度碱化 Na2CO3+NaHCO3-moderate alkalization 2.03 0.63 9.92

图1

盐碱胁迫下棉花各器官干物质质量叶(a)、茎(b)、根(c)和总生物量(d) 柱上不同小写字母表示不同处理在0.05水平差异显著。"

图2

盐碱胁迫对棉花叶片相对电导率和丙二醛含量的影响 柱上不同小写字母表示不同处理在0.05水平差异显著。"

图3

盐碱胁迫下主成分分析 a: 正离子模式; b: 负离子模式。"

图4

CS组对CK组的差异代谢物筛选火山图 a: 正离子模式; b: 负离子模式。散点大小代表OPLS-DA模型的VIP值, 散点越大VIP值越大。显著上调的代谢物以红色表示, 显著下调的代谢物以蓝色表示, 非显著差异的代谢物为灰色。"

图5

AS组对CK组的差异代谢物筛选火山图(a) POS (b) NEG a: 正离子模式; b: 负离子模式。散点大小代表OPLS-DA模型的VIP值, 散点越大VIP值越大。显著上调的代谢物以红色表示, 显著下调的代谢物以蓝色表示, 非显著差异的代谢物为灰色。"

图6

正离子模式下CS组对CK组的差异代谢物分析 a: 层次聚类热图分析; b: 差异代谢物分类图; c: 差异代谢物VIP得分图。"

图7

负离子模式下CS组对CK组的差异代谢物分析 a: 层次聚类热图分析; b: 差异代谢物分类图; c: 差异代谢物VIP得分图。"

图8

正离子模式下AS组对CK组的差异代谢物分析 a: 层次聚类热图分析; b: 差异代谢物分类图; c: 差异代谢物VIP得分图。"

图9

负离子模式下AS组对CK组的差异代谢物分析 a: 层次聚类热图分析; b: 差异代谢物分类图; c: 差异代谢物VIP得分图。"

图10

CS组对CK组的通路分析图 每个圆圈代表一个代谢途径, 颜色表示差异性大小, 颜色越深表示差异性越显著, 颜色越浅表示差异性越不显著。圆圈的大小表示影响值, 圆圈越大影响值越大, 圆圈越小影响值越小。1: 亚油酸代谢; 2: 淀粉和蔗糖代谢; 3: 精氨酸生物合成; 4: 半乳糖代谢; 5: 精氨酸和脯氨酸代谢; 6: 乙醛酸和二羧酸代谢; 7: 丙酮酸代谢; 8: 二苯乙烯类、二芳基庚类和姜辣素生物合成; 9: 苯丙酸生物合成; 10: 萜类主链生物合成。"

图11

AS组对CK组的通路分析图 每个圆圈代表一个代谢途径, 颜色表示差异性大小, 颜色越深表示差异性越显著, 颜色越浅表示差异性越不显著。圆圈的大小表示影响值, 圆圈越大影响值越大, 圆圈越小影响值越小。1: 色氨酸代谢; 2: 精氨酸和脯氨酸代谢; 3: 柠檬酸循环(TCA循环); 4: 泛酸和辅酶A生物合成; 5: 乙醛酸和二羧酸代谢。"

[1] Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 2005, 1012: 615-620.
[2] Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genomic, 2011, 11: 369-379.
doi: 10.1007/s10142-010-0191-2
[3] Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via solexa sequencing. Acta Physiol Plant, 2012, 34: 107-115.
doi: 10.1007/s11738-011-0809-6
[4] 廖欢, 侯振安. 盐碱胁迫对不同棉花品种生长及离子组含量分布的影响. 新疆农业科学, 2020, 57: 219-232.
doi: 10.6048/j.issn.1001-4330.2020.02.003
Liao H, Hou Z A. Effects of salt-alkali stress on the growth and ion group content distribution of different cotton varieties. Xinjiang Agric Sci, 2020, 57: 219-232. (in Chinese with English abstract)
[5] Li Y Y, Zhao K, Ren J H, Ding Y L, Wu L L, Catherine O. Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in western Jilin province using RADARSAT2 data. Sci World J, 2014, 56: 30-45.
[6] Ashraf J, Zou D Y, Wang D Y, Malik W, Zhang Y P, Abid M A, Cheng H L, Yang Q H, Song G L. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J, 2018, 16: 699-713.
doi: 10.1111/pbi.12856
[7] Harris M A. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2003, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024
[8] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar et cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5
[9] de Lacerda C F, Cambraia J, Oliva M A, Ruiz H A, Prisco J T. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot, 2003, 49: 107-120.
doi: 10.1016/S0098-8472(02)00064-3
[10] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[11] Yang C, Xu H H, Wang L, Liu J, Shi D C, Wang D L. Comparative effects of salt-stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8
[12] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016
[13] Ahmad P, Jaleel C A, Salem M A, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in pants during abiotic stress. Crit Rev Biotechnol, 2010, 30: 161-175.
doi: 10.3109/07388550903524243
[14] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 592: 206-216.
[15] Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234: 1007-1018.
doi: 10.1007/s00425-011-1458-0
[16] Leshem Y, Melamed B N, Cagnac O, Ronen G, Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA, 2006, 103: 18008-18013.
doi: 10.1073/pnas.0604421103
[17] Bino R J, Hall R D, Fiehn O, Kopka J, Saito K, Draper J, Nikolau B J, Mendes P, Roessner-Tunali U, Beale M H. Potential of metabolomics as a functional genomics tool. Trends Plant Sci, 2004, 9: 418-425.
doi: 10.1016/j.tplants.2004.07.004
[18] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[19] Ma S Q, Lyu L, Meng C, Zhang C S, Li Y Q. Integrative analysis of the and transcriptome of sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline-alkali stress. J Agric Food Chem, 2020, 68: 14781-14789.
doi: 10.1021/acs.jafc.0c06249
[20] Gui G, Lyu C H, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci, 2019, 20: 5910-5928.
doi: 10.3390/ijms20235910
[21] Guo R, Shi L X, Yan C R, Zhong X, Gu F X, Liu Q, Xia X, Li H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol, 2017, 17: 41-53.
doi: 10.1186/s12870-017-0994-6
[22] Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol, 2015, 15: 170-182.
doi: 10.1186/s12870-015-0546-x
[23] Ampofo-Asiama J, Baiye V M M, Hertog M L A T M, Waelkens E, Geeraerd A H, Nicolai B M. The metabolic response of cultured tomato cells to low oxygen stress. Plant Biol, 2014, 16: 594-606.
doi: 10.1111/plb.12094
[24] Kim J K, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-coursemetabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot, 2006, 58: 415-424.
doi: 10.1093/jxb/erl216
[25] Rizhsky L, Liang H J, Shuman J, Shulaev V, Davletova S. When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696.
doi: 10.1104/pp.103.033431
[26] Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
doi: 10.1007/s004250050524
[27] Abbas G, Saqib M, Akhtar J, Haq M A U. Interactive effects of salinity and iron deficiency on different rice genotypes. J Plant Nutr Soil Sci, 2015, 178: 306-311.
doi: 10.1002/jpln.201400358
[28] Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3
[29] Lokhande V H, Nikam T D, Patade V Y, Ahire M L, Suprasanna P. Efects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult, 2011, 104: 41-49.
doi: 10.1007/s11240-010-9802-9
[30] 孙叶烁, 张国新, 丁守鹏, 姚玉涛, 丁冯洁. 盐胁迫对樱桃番茄风味品质的影响. 核农学报, 2022, 36: 838-844.
Sun Y S, Zhang G X, Ding S P, Yao Y T, Ding F J. Effects of salt stress on flavor compounds of cherry tomato fruits. J Nucl Agric Sci, 2022, 36: 838-844. (in Chinese with English abstract)
[31] Hare P D, Cress W A, Staden J V. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 1998, 21: 535-553.
doi: 10.1046/j.1365-3040.1998.00309.x
[32] Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 2011, 20: 1422-1431.
doi: 10.1007/s10646-011-0699-9
[33] Gagneul D, Aïnouche A, Duhaze C. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol, 2007, 144: 1598-1611.
pmid: 17468212
[34] Brosché M, Vinocur B, Alatalo E R, Lamminmäki A, Teichmann T, Ottow E A, Djilianov D, Afif D, Bogeat-Triboulot M B, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6: 681-689.
[35] Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot, 2015, 115: 433-447.
doi: 10.1093/aob/mcu239
[36] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
doi: 10.1146/annurev.arplant.51.1.463
[37] Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes. Ann Bot, 2015, 115: 327-331.
doi: 10.1093/aob/mcu267
[38] Wang Y, Stevanato P, Yu L, Zhao H J, Sun X W, Sun F, Li J, Geng G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J Plant Res, 2017, 1306: 1079-1093.
[39] Fougère F, Rudulier D L, Streeter J G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, Bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol, 1991, 964: 1228-1236.
[40] Kaplan F, Kopka J, Haskell D W, Wei Z, Schiller K C, Gatzke N, Sun D Y, Charles L G. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol, 2004, 1364: 4159-4168.
[41] Rosa M, Prado C, Podazza G, Interdonato R, Pardo F E. Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav, 2009, 4: 383-393.
[42] Yang Y. Guo Y. Elucidating the molecular mechanisms mediating plant saltstress responses. New Phytol, 2018, 217: 523-539.
doi: 10.1111/nph.14920
[43] Singh M, Kumar J, Singh S, Singh V P, Prasad S M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol, 2015, 14: 407-426.
doi: 10.1007/s11157-015-9372-8
[44] Wang L, Li G, Wei S, Li L, Li J. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica, 2019, 571: 286-294.
[45] Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330.
[46] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot, 2007, 58: 2339-2358.
doi: 10.1093/jxb/erm121
[47] Kirma M, Araujo W L, Fernie A R, Galili G. The multifaceted role of aspartate-family amino acids in plant metabolism. J Exp Bot, 2012, 63: 4995-5001.
doi: 10.1093/jxb/ers119
[48] Wang H, Ahan J, Wu Z H, Shi D C, Liu B, Yang C W. Alteration of nitrogen metabolism in rice variety ‘Nipponbare' induced by alkali stress. Plant Soil, 2012; 355: 131-147.
doi: 10.1007/s11104-011-1086-2
[49] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci, 1998, 3: 389-395.
doi: 10.1016/S1360-1385(98)01311-9
[50] Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkaline resistant halophyte Kochia sieversiana during adaptation to saline and alkaline conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3
[51] Yang C W, Xu H H, Wang L L, Liu J, Shi D C, Wang D L. Comparative effects of salt stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8
[52] Ma B, Chen J, Zheng H Y, Fang T, Ogutu C, Li S H, Han Y P, Wu B H. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem, 2015, 172: 86-91.
doi: 10.1016/j.foodchem.2014.09.032
[53] Chen W C, Cui P J, Sun H Y, Guo W Q, Yang C W, Jin H, Fang B, Shi D C. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind Crops Prod, 2009, 30: 351-358.
doi: 10.1016/j.indcrop.2009.06.007
[54] Fu H J, Yu H Y, Li T X, Wu Y. Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf, 2019, 168: 330-337.
doi: 10.1016/j.ecoenv.2018.10.023
[55] Zhou L, Yu J, Yan P, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant, 2017, 159: 42-58.
doi: 10.1111/ppl.12483 pmid: 27507681
[56] Baron K, Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell Deve Biol Plant, 2008, 44: 384-395.
[57] Bueno M, Cordovilla M P. Polyamines in Halophytes. Front Recent Dev Plant Sci, 2019, 10: 439-445.
[58] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响. 作物学报, 2021, 47: 2001-2011.
doi: 10.3724/SP.J.1006.2021.04238
Xin Z Q, Dai H H, Xin Y F, He X, Xie H Y, Wu N B. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress. Acta Agron Sin, 2021, 47: 2001-2011. (in Chinese with English abstract)
[1] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[2] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[3] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[6] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[7] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[12] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[13] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[14] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[15] 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .