欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2265-2273.doi: 10.3724/SP.J.1006.2022.14109

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花GhIQM1基因克隆及抗黄萎病功能分析

李名江1(), 雷建峰2, 祖丽皮耶•托合尼亚孜2, 代培红1, 刘超1,*(), 刘晓东1,*()   

  1. 1.新疆农业大学生命科学学院, 新疆乌鲁木齐 830052
    2.新疆农业大学农学院, 新疆乌鲁木齐 830052
  • 收稿日期:2021-06-23 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-02-09
  • 通讯作者: 刘超,刘晓东
  • 作者简介:E-mail: 1091019753@qq.com
  • 基金资助:
    新疆农业大学生物学创新团队项目(ITB202108)

Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt

LI Ming-Jiang1(), LEI Jian-Feng2, ZULIPIYE·Tuoheniyazi 2, DAI Pei-Hong1, LIU Chao1,*(), LIU Xiao-Dong1,*()   

  1. 1. College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2021-06-23 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-02-09
  • Contact: LIU Chao,LIU Xiao-Dong
  • Supported by:
    Innovative Team Foundation of Biology of Xinjiang Agricultural University(ITB202108)

摘要:

棉花是我国重要的经济作物, 而黄萎病(Verticillium wilt)是棉花生产上的主要病害, 严重危害棉花产量和纤维品质。本研究通过转录组数据分析筛选出1个与棉花抗病相关、不依赖Ca2+的钙调素结合蛋白基因GhIQM1。该基因受黄萎病菌和水杨酸(SA)诱导表达。利用病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术研究其在棉花抗黄萎病中的功能发现, 抑制GhIQM1基因表达增强了植株对黄萎病的抗性, TRV:GhIQM1植株病情指数、维管束褐化程度、体内病原菌积累量都显著低于TRV:00。qRT-PCR分析表明, 抑制GhIQM1表达的植株接种黄萎病后, 作为参与水杨酸途径中的3个重要基因NPR1NPR3PR5的表达量显著高于对照。以上结果初步表明, GhIQM1基因可能通过抑制SA途径负调控了棉花的黄萎病抗性。

关键词: 棉花, 黄萎病, GhIQM1, 基因沉默

Abstract:

Cotton is an important economic crop in China, and Verticillium wilt is the main disease in cotton production, which seriously endangers cotton yield and fiber quality. In this project, GhIQM1, encode a Ca2+-independent calmodulin-binding protein in cotton, was screened out by transcriptome analysis. The gene was up-regulated by Verticillium dahliae and salicylic acid treatment in cotton. The function of GhIQM1 was explored in cotton in response to Verticillium wilt using virus-induced gene silencing (VIGS) technology. The results showed that disease index (DI), the symptoms of Verticillium wilt, the degree of browning of vascular tissue, and the relative fungal biomass pathogen accumulation in vivo in the GhIQM1-silenced plants (TRV:GhIQM1) were significantly lower than those in the TRV:00 cotton plant. The qRT-PCR results revealed that the gene expression level of NPR1, NPR3, and PR5, involved in the salicylic acid pathway, were significantly higher than the control after inoculation of Verticillium dahliae. The above results indicate that the GhIQM1 negatively regulates the resistance of cotton to Verticillium wilt through suppressing SA pathway.

Key words: cotton, Verticillium wilt, GhIQM1, gene silencing

表1

本研究中使用的引物序列"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Application
GhIQM1-F GAATTCAGACCCGTTAGTGAGCTTG 片段扩增Gene fragment amplification
GhIQM1-R GGTACCCTCAAGATTTACTTCTTTCCC 基因片段扩增Gene fragment amplification
qGhIQM1-F ATCAGCCTGGCAACAAATTC 荧光定量Quantitative real time-PCR
qGhIQM1-R CAGCTTTGCCGTTTCTCAAA 荧光定量Quantitative real time-PCR
ITS-F AAAGTTTTAATGGTTCGCTAAGA 荧光定量Quantitative real time-PCR
VE1-R CTTGGTCATTTAGAGGAAGTAA 荧光定量Quantitative real time-PCR
SA-GhNPR1-F CTAGCTTGCGGAGGGATTGATACC 荧光定量Quantitative real time-PCR
SA-GhNPR1-R GAGATGGCTGACCTGTCAAACTGC 荧光定量Quantitative real time-PCR
SA-GhNPR3-F GCGGAGAGCATTCGGTTACT 荧光定量Quantitative real time-PCR
SA-GhNPR3-R GCTCAACATCGTCGGAGTCT 荧光定量Quantitative real time-PCR
SA-GhPR5-F TGAGTGCTCCTACACCGTCT 荧光定量Quantitative real time-PCR
SA-GhPR5-R CGACCCCAAATACGAGCCAT 荧光定量Quantitative real time-PCR
JA-GhPDF1.2-F CTGTGGTAGCGGATGGTGATAAG 荧光定量Quantitative real time-PCR
JA-GhPDF1.2-R GTGCAGACGCATTTGCGAAGGAA 荧光定量Quantitative real time-PCR
JA-GhAOC-F AATAGAGCATAAACCCGAAATGAAAG 荧光定量Quantitative real time-PCR
JA-GhAOC-R CAAAAATGCCAGACCCACCAGTA 荧光定量Quantitative real time-PCR
JA-GhAOS-F TGCCACCTGGTCCTTTCATTTC 荧光定量Quantitative real time-PCR
JA-GhAOS-R GCGTGTTTGGGCTCGGAAGGGTCG 荧光定量Quantitative real time-PCR
GhUBQ7-F GAAGGCATTCCACCTGACCAAC 内参基因Reference gene
GhUBQ7-R CTTGACCTTCTTCTTCTTGTGCTTG 内参基因Reference gene

图1

GhIQM1基因的表达分析 CK: 对照组; V991: 大丽轮枝菌处理组; SA: 水杨酸处理组。**和***分别表示在0.01、0.001水平显著差异。每组样品取3个生物学重复。"

图2

GhIQM1基因的VIGS载体构建及沉默效率检验 A: M: Trans2K Plus II DNA marker; a: GhIQM1片段的PCR产物扩增; b: pTRV2-GhIQM1载体的酶切验证。B: 沉默GhCLA1基因表型; C: GhCLA1和GhIQM1基因沉默效率检测。*、**分别表示在0.05和0.01水平显著差异。"

图3

沉默GhIQM1增强了棉花对黄萎病菌的抗性 A: 黄萎病菌侵染20 d后对照植株TRV:00和沉默植株TRV:GhIQM1植株的病症; B: 黄萎病菌侵染15 d后TRV:00和TRV:GhIQM1植株的病情指数; C: 接种黄萎病菌15 d后, TRV:00和TRV:GhIQM1植株维管束褐化情况; D: TRV:00和TRV:GhIQM1在接种黄萎病菌15 d后相对生物含量; E: 接种黄萎病菌20 d后TRV:00和TRV:GhIQM1棉株茎部的恢复培养试验。**表示TRV:00与TRV:GhIQM1在0.01水平显著性差异。"

图4

GhIQM1基因沉默后SA/JA信号通路相关基因的表达分析 TRV:00: 对照组; TRV:GhIQM1: 沉默组。*、**、***分别表示在0.05、0.01和0.001水平显著差异。"

[1] Klosterman S J, Atallah Z K, Vallad G, Subbarao K V. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol, 2009, 47: 39-62.
doi: 10.1146/annurev-phyto-080508-081748 pmid: 19385730
[2] Vallad G E, Qin Q M, Grube R, Subbarao K V, Hayes R J. Characterization of race-specific interactions among isolates of Verticillium dahliae pathogenic on lettuce. Phytopathology, 2006, 96: 1380-1387.
doi: 10.1094/PHYTO-96-1380 pmid: 18943671
[3] 马存, 简桂良, 郑传临. 中国棉花抗枯、黄萎病育种50年. 中国农业科学, 2002, 35: 508-513.
Ma C, Jian G L, Zheng C L. 50 years of breeding for resistance to blight and Verticillium wilt of cotton in China. Sci Agric Sin, 2002, 35: 508-513. (in Chinese with English abstract)
[4] Bari R, Jones J. Role of hormones in plant defense responses. Plant Mol Biol, 2009, 69: 473-488.
doi: 10.1007/s11103-008-9435-0
[5] Vlot A C, Klessig D F, Park S W. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol, 2008, 11: 436-442.
doi: 10.1016/j.pbi.2008.05.003
[6] Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M, Gu L, Zhang B, Dou D. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun, 2014, 5: 4686.
doi: 10.1038/ncomms5686
[7] Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 2011, 6: e19008.
[8] Fradin E F, Abd-El-Haliem A, Masini L, Vanden Berg G C, Joosten M H, Thomma B P. Interfamily transfer of tomato ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol, 2011, 156: 2255-2265.
doi: 10.1104/pp.111.180067
[9] Gao W, Long L, Zhu L, Xu L, Gao W, Sun L, Liu L, Zhang X. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703.
doi: 10.1074/mcp.M113.031013
[10] Zhang Y, Wang X F, Ding Z G, Ma Q, Zhang G R, Zhang S L, Li Z K, Wu L Q, Zhang G Y, Ma Z Y. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics, 2013, 14: 637.
doi: 10.1186/1471-2164-14-637 pmid: 24053558
[11] Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X, Zhu L. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot, 2014, 65: 6679-6692.
doi: 10.1093/jxb/eru393
[12] Shaban M, Miao Y, Ullah A, Khan A Q, Menghwar H, Khan A H, Ahmed M M, Tabassum M A, Zhu L. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiol Biochem, 2018, 125: 193-204.
doi: 10.1016/j.plaphy.2018.02.011
[13] Dhar N, Chen J Y, Subbarao K V, Klosterman S J. Hormone signaling and its interplay with development and defense responses in Verticillium-plant interactions-3. Front Plant Sci, 2020, 38: 173-183.
[14] Li X, Zhu L, Tu L, Guo X, Lu L, Sun L, Wei G, Zhang X. Differential gene expression in cotton defense response to Verticillium dahliae by SSH. J Phytopathol, 2011, 159: 606-615.
doi: 10.1111/j.1439-0434.2011.01813.x
[15] Reddy A, Ali G S, Celesnik H, Day I S. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell, 2011, 23: 2010-2032.
doi: 10.1105/tpc.111.084988
[16] Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah B. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr Opin Plant Biol, 2017, 38: 173-183.
doi: 10.1016/j.pbi.2017.06.003
[17] Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56: 1472-1480.
doi: 10.1093/pcp/pcv063 pmid: 25941234
[18] Blume B. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell Online, 2000, 12: 1425-1440.
doi: 10.1105/tpc.12.8.1425
[19] Atkinson M M, Keppler L D, Orlandi E W, Mischke B. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol, 1990, 92: 215-221.
doi: 10.1104/pp.92.1.215 pmid: 16667249
[20] Tian W, Hou C, Ren Z, Wang C, Zhao F, Ahlbeck D, Hu S, Zhang L, Niu Q, Li L. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 2019, 572: 131-135.
doi: 10.1038/s41586-019-1413-y
[21] Wei C C, Fabry E, Hay E, Lloyd L, Kaufman N, Yang Y P, Stuehr D J. Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dynamics, 2020, 38: 2352-2368.
doi: 10.1080/07391102.2019.1633409
[22] Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci, 2014, 229: 96-110.
doi: 10.1016/j.plantsci.2014.08.017
[23] Defalco T, Bender K, Snedden W. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2010, 425: 27-40.
doi: 10.1042/BJ20091147
[24] Abel S, Bürstenbinder K, Müller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal Behavior, 2013, 8: e24369.
[25] Zhou Y P, Duan J, Fujibe T, Yamamoto K T, Tian C E. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Mol Biol, 2012, 79: 333-346.
doi: 10.1007/s11103-012-9915-0
[26] Zhou Y P, Chen Y Z, Yamamoto K T, Duan J, Tian C E. Sequence and expression analysis of the Arabidopsis IQM family. Acta Physiol Plant, 2010, 32: 191-198.
doi: 10.1007/s11738-009-0398-9
[27] Lyu T, Li X, Fan T, Tian H, Luo C E. The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense. Plant Physiol, 2019, 181: 1314-1327.
doi: 10.1104/pp.19.01060
[28] 王龙涛. 拟南芥IQM2基因功能的研究. 华南农业大学硕士学位论文, 广东广州, 2012.
Wang L T. Study on the Function of Arabidopsis IQM2 gene. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2012. (in Chinese with English abstract)
[29] 陈羽中, 周玉萍, 叶蕙, 桂林, 郭培国, 田长恩. 拟南芥IQM2 cDNA的克隆与生物信息学分析. 植物科学学报, 2010, 28: 353-358.
Chen Y Z, Zhou Y P, Ye H, Gui L, Guo P G, Tian C E. Cloning and bioinformatics analysis of Arabidopsis IQM2 cDNA. Plant Sci J, 2010, 28: 353-358. (in Chinese with English abstract)
[30] 徐浩. 拟南芥IQM3参与光周期成花调控的初步研究. 广州大学硕士学位论文, 广东广州, 2019.
Xu H. Preliminary Study on the Involvement of Arabidopsis IQM3in the Regulation of Photoperiod Flower Formation. MS Thesis of Guangzhou University, Guangzhou, Guangdong, China, 2019. (in Chinese with English abstract)
[31] 弓路平. 拟南芥IQM5参与成花调控的分子遗传学研究. 广州大学硕士学位论文, 广东广州, 2017.
Gong L P. Molecular Genetics of Arabidopsis IQM5 Involved in Floral Regulation. MS Thesis of Guangzhou University, Guangzhou, Guangdong, China, 2019. (in Chinese with English abstract)
[32] 弓路平, 萧文慧, 周玉萍, 黄小玲, 田长恩. 拟南芥IQM5.2的克隆、表达及其生物信息学分析. 生物技术通报, 2016, 32(5): 69-74.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.05.009
Gong L P, Xiao W H, Zhou Y P, Huang X L, Tian C E. Cloning, expression and bioinformatics analysis of Arabidopsis IQM5.2. Biotechnol Bull, 2016, 32(5): 69-74. (in Chinese with English abstract)
[33] 冯奕嘉, 徐浩, 范甜, 吕天晓, 谢楚萍, 周玉萍, 田长恩. 拟南芥IQM6突变推迟远轴面表皮毛的发生. 植物生理学报, 2019, 55: 729-735.
Feng Y J, Xu H, Fan T, Lyu T X, Xie C P, Zhou Y P, Tian C E. The Arabidopsis IQM6 mutation delays the occurrence of abaxial epidermal hairs. Plant Physiol J, 2019, 55: 729-735. (in Chinese with English abstract)
[34] Yang J, Zhang Y, Wang X, Wang X, Li Z, Wu J, Wang G, Wu L, Zhang G, Mal Z. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC Plant Biol, 2018, 18: 339.
doi: 10.1186/s12870-018-1565-1 pmid: 30526498
[35] Xia M, Sherlock J, J Hegerich P, You X Q, Lee K, KWalworth C, Spier E. DataAssist—data analysis software for TaqMan real- time PCR data. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I, Hong Kong, China, 2010.
[36] Zhang Y, Wang X, Rong W, Yang J, Ma Z. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016, 7: 1830.
doi: 10.3389/fpls.2016.01830 pmid: 28018374
[37] Pieterse C, Leon-Reyes A, Sjoerd V, Verhage A, Wees S V. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308-316.
doi: 10.1038/nchembio.164 pmid: 19377457
[38] Tada Y, Spoel S H, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-Nitrosylation and thioredoxins. Science, 2008, 321: 952-956.
doi: 10.1126/science.1156970
[39] Cao H. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583-1592.
doi: 10.2307/3869945
[40] Hui C, Glazebrook J, Clarke J D, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63.
doi: 10.1016/S0092-8674(00)81858-9
[41] Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95: 6531-6536.
doi: 10.1073/pnas.95.11.6531
[42] Lin W C, Lu C F, Wu J W, Cheng M L, Lin Y M, Yang N S, Black L, Green S K, Wang J F, Cheng C P. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res, 2004, 13: 567-581.
pmid: 15672838
[43] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511-520.
doi: 10.1094/MPMI-18-0511
[44] Malnoy M, Jin Q, Borejszawysocka E E, He S Y, Aldwinckle H S. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact, 2007, 20: 1568-1580.
doi: 10.1094/MPMI-20-12-1568
[45] Fu Z Q, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486: 228-232.
doi: 10.1038/nature11162
[46] Du L, Ali G S, Simons K A, Hou J, Yang T, Reddy A S, Poovaiah B W. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature, 2009, 457: 1154-1158.
doi: 10.1038/nature07612
[47] Shigenaga A M, Berens M L, Tsuda K, Argueso C T. Towards engineering of hormonal crosstalk in plant immunity. Curr Opin Plant Biol, 2017, 38: 164-172.
doi: 10.1016/j.pbi.2017.04.021
[1] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[2] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[3] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[4] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[7] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[12] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[13] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!