欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2255-2264.doi: 10.3724/SP.J.1006.2022.12033

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

对水稻种子耐储性QTL的研究

黄祎雯1,2(), 孙滨2(), 程灿2, 牛付安2, 周继华2, 张安鹏2, 涂荣剑2, 李瑶2,3, 姚瑶1,2, 代雨婷1,2, 谢开珍2,3, 陈小荣1, 曹黎明2,*(), 储黄伟2,*()   

  1. 1.江西农业大学农学院, 江西南昌 330045
    2.上海市农业科学院作物育种栽培研究所, 上海 201403
    3.上海海洋大学水产与生命学院, 上海 201306
  • 收稿日期:2021-05-06 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-02-14
  • 通讯作者: 曹黎明,储黄伟
  • 作者简介:黄祎雯, E-mail: 1564903141@qq.com;
    孙滨, E-mail: sunbin@saas.sh.cn第一联系人:

    ** 同等贡献

QTL mapping of seed storage tolerance in rice (Oryza sativa L.)

HUANG Yi-Wen1,2(), SUN Bin2(), CHENG Can2, NIU Fu-An2, ZHOU Ji-Hua2, ZHANG An-Peng2, TU Rong-Jian2, LI Yao2,3, YAO Yao1,2, DAI Yu-Ting1,2, XIE Kai-Zhen2,3, CHEN Xiao-Rong1, CAO Li-Ming2,*(), CHU Huang-Wei2,*()   

  1. 1. School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2. Institute of crop breeding and cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
    3. College of Fisheries and life, Shanghai Ocean University, Shanghai 201306, China
  • Received:2021-05-06 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-02-14
  • Contact: CAO Li-Ming,CHU Huang-Wei
  • About author:First author contact:

    ** Contributed equally to this work

摘要:

稻谷的耐储性在种子生产保存和粮食储备中具有重要的意义。本研究以人工陈化的方法对15个三系杂交稻恢复系品种进行筛选, 获得了繁11、繁12、繁31、繁32和繁38五个耐储性较好的品种。选择繁38与粳型恢复系繁26为亲本杂交获得F1代, 构建了包含154个株系的双单倍体(double haploid, DH)群体。以2b-RAD简化基因组测序技术对亲本和群体中每个株系进行测序, 并构建SNP标记遗传图谱。分析水稻在人工陈化10 d和15 d时与耐储藏相关的QTL。共检测到了6个与稻谷耐储性相关的QTL位点, 分布于3号、5号、6号、11号和12号染色体上, LOD值介于3.4509~6.8036之间, 可解释6.1575%~12.9979%的表型变异, 加性效应在-6.7586%到6.1235%范围内。其中qSI-12位点在陈化10 d和陈化15 d两个条件下均能检测到。qSI-5aqSI-6这2个位点只在陈化10 d时检测到, 而qSI-3、qSI-5bqSI-11这3个位点只在陈化15 d时检测到。此外, 还检测到32对上位性互作位点。这些结果丰富了耐储性品种育种的遗传资源, 为进一步精细定位耐储性相关的QTL奠定了基础。

关键词: 水稻, 耐储藏, 人工陈化, QTL分析, DH群体

Abstract:

Rice seed storability is great significance in seed production and grain storage. In this study, 15 three-line hybrid rice restorer varieties were screened by artificial aging method, and 5 varieties with good storage tolerance (namely Fan 11, Fan 12, Fan 31, Fan 32, and Fan 38) were obtained. A Double Haploid (DH) population including 154 lines was constructed using F1 derived from the crossing between storage tolerance variety, Fan 38, and japonica restorer line, Fan 26. The parents and DH lines were sequenced using 2bB-RAD Reduced-Representation Genome Sequencing, and a genetic linkage map of SNP marker was constructed. QTLs related to storage tolerance after 10 days and 15 days artificial aging for were analyzed, respectively. A total of 6 QTL loci related to rice storage tolerance were detected on chromosomes 3, 5, 6, 11, and 12, with LOD values ranging from 3.4509 to 6.8036, explaining phenotypic variation of 6.1575%-12.9979%, and the additive effect ranged from -6.7586% to 6.1235%. The qSI-12 locus could be detected under both 10-day and 15-day aging conditions. qSI-5a and qSI-6 were detected only after 10 days of artificial aging, while qSI-3, qSI-5b, and qSI-11 were detected only after 15 days of artificial aging. In addition, 32 pairs of epistatic interaction sites were detected. These results enriched the genetic resources for the breeding of storage tolerance varieties, and laid a foundation for further fine mapping of QTLs related to storage tolerance.

Key words: rice, storage, artificial aging, QTLs analysis, double haploid population

表1

耐储藏水稻品种的筛选"

品种
Variety
发芽率(%, 平均值±标准差) Germination rate (%, mean±SD) 耐储藏指数
Storability index (%)
籼型指数
Indica index Fi
对照 Control 陈化15 d Aged for 15 days
繁1 Fan 1 91.67±2.36 13.33±4.71 14.55 0.12
繁3 Fan 3 92.22±1.92 23.33±3.33 25.30 0.18
繁6 Fan 6 90.00±3.33 2.22±1.92 2.47 0.15
繁9 Fan 9 90.00±8.81 0.00±0.00 0 0.15
繁10 Fan 10 93.33±4.71 0.00±0.00 0 0.15
繁11 Fan 11 83.33±6.67 46.67±6.67 56.00 0.41
繁12 Fan 12 90.00±5.77 63.33±0.00 70.37 0.18
繁14 Fan 14 87.78±5.09 0.00±0.00 0 0.18
繁16 Fan 16 96.67±0.00 30.00±3.33 31.03 0.21
繁24 Fan 24 95.56±5.09 0.00±0.00 0 0.21
繁26 Fan26 96.67±3.33 4.44±3.85 4.60 0.21
繁29 Fan 29 97.78±1.92 0.00±0.00 0.00 0.24
繁31 Fan 31 91.11±3.85 48.33±7.07 53.05 0.85
繁32 Fan 32 93.33±5.77 58.89±5.09 63.10 0.91
繁38 Fan 38 97.78±3.84 72.22±8.39 73.86 0.88

图1

不同人工陈化时间水稻亲本的发芽情况(a)和发芽率(b)"

图2

人工陈化10 d (a)和15 d (b) DH群体耐储藏指数分布情况"

表2

人工陈化10 d和15 d亲本及DH群体的耐储藏"

陈化天数
Artificial aging time
亲本Parents 单双倍体群体DH population
繁26
Fan 26
繁38
Fan 38
平均值±标准差Mean±SD 区间
Range
偏斜
Skewness
峰度
Kurtosis
10 d 43.10 79.55 58.16±21.08 7.09-99.26 -0.20 -0.32
15 d 4.60 73.86 14.20±14.84 0-65.19 1.47 1.69

表3

人工陈化条件下水稻种子耐储藏性状QTL定位"

性状
Trait
位点
Locus
位置
Position (cM)
标记区间
Marker range
范围
Range (bp)
LOD值
LOD value
贡献率
PVE (%)
加性效应
Additive effect (%)
0-10 d qSI-5a 40 Chr. 5: 56-59 7,208,572-7,851,620 4.5867 8.9836 -6.7586
qSI-6 59 Chr. 6: 143-200 7,984,061-9,393,696 3.7526 7.2240 6.1235
qSI-12 109 Chr. 12: 338-357 27,172,724-27,529,089 4.5403 8.8263 -6.7220
0-15 d qSI-3 23 Chr. 3: 191-195 9,836,591-9,908,839 6.8036 12.9979 -6.6611
qSI-5b 54 Chr. 5: 21-36 1,425,225-6,314,136 3.4682 7.7014 -4.3016
qSI-11 31 Chr. 11: 63-65 3,179,591-3,286,377 6.2939 11.7685 5.5123
qSI-12 109 Chr. 12: 338-357 27,172,724-27,529,089 3.4509 6.1575 -3.8607

附表2

水稻12条染色体遗传标记的分布"

染色体 连锁群 标记个数 遗传长度 平均区间 最大区间长度 标记之间的平均物理距离
Chromosome Linkage group No. of markers Genetic length (cM) Average interval (cM) Max. interval length (cM) Average physical distance between markers (kb)
1 1-1 9 17.07 1.9 5.99 479.7
1-2 74 100.47 1.36 7.96 381.38
2 2-1 13 15.18 1.17 1.97 921.47
2-2 10 13.26 1.33 3.28 902.32
2-3 16 38.9 2.43 21.69 651.16
3 3 77 125.84 1.63 13.95 472.91
4 4-1 44 70.97 1.61 4.71 571.43
4-2 16 13.94 0.87 1.98 169.8
5 5 53 109.26 2.06 23.08 565.25
6 6-1 4 5.39 1.35 3.41 270.57
6-2 51 106.92 2.1 18.22 567.39
7 7 33 94.59 2.87 15.84 899.93
8 8 66 123.28 1.87 15.55 430.95
9 9 33 80.73 2.45 15.11 697.36
10 10 64 80.48 1.26 10 362.61
11 11 56 112.48 2.01 15.4 518.23
12 12-1 9 6.66 0.74 1.35 244.07
12-2 38 53.44 1.41 8.13 484.94
总计Overal 总计Overal 666 1168.86 1.69 23.08 594.64

图3

人工陈化条件下水稻种子耐储藏性状QTL在DH群体中染色体分布(a)和上位性分析(b) 红色和蓝色虚线分别表示人工陈化10 d和15 d时检测到的上位性效应。"

附表3

人工老化条件下水稻种子耐储藏性状上位性分析"

TraitID TraitName Chromosome1 Position1 LeftMarker1 RightMarker1 Chromosome2 Position2 LeftMarker2 RightMarker2 LOD PVE (%) Add1 Add2 AddbyAdd
1 10d 1 178 ch1-770 ch1-773 4 109 ch4-643 ch4-649 2.5344 2.9461 -0.3359 -0.3593 4.7714
1 10d 1 125 ch1-336 ch1-344 5 97 ch5-385 ch5-388 3.1207 4.8485 -1.9963 1.7157 5.3383
1 10d 4 5 ch4-89 ch4-90 6 63 ch6-263 ch6-289 2.6415 3.022 0.9242 1.6863 5.1041
1 10d 3 24 ch3-191 ch3-195 7 8 ch7-23 ch7-25 2.8394 3.8246 -3.0147 1.7443 -6.2923
1 10d 2 39 ch2-64 ch2-90 7 60 ch7-278 ch7-280 2.6974 12.0232 4.3933 -2.356 9.5701
1 10d 7 9 ch7-25 ch7-36 7 89 ch7-307 ch7-308 2.6536 4.1307 -2.7874 -2.5645 -5.1543
1 10d 10 5 ch10-97 ch10-129 10 42 ch10-567 ch10-573 2.5463 3.1451 -1.1836 1.1202 5.879
1 10d 11 32 ch11-65 ch11-86 11 63 ch11-427 ch11-433 2.5051 3.056 1.9739 0.7077 5.8484
1 10d 10 41 ch10-563 ch10-567 12 105 ch12-325 ch12-334 2.5924 2.9598 -0.0015 1.2774 -5.0737
2 15d 1 42 ch1-159 ch1-161 3 23 ch3-171 ch3-183 3.5395 4.97 5.9472 -2.188 -7.6707
2 15d 2 39 ch2-64 ch2-90 3 23 ch3-171 ch3-183 3.8744 4.1072 -5.6799 -0.9674 6.492
2 15d 3 100 ch3-807 ch3-837 3 105 ch3-843 ch3-864 2.8365 3.4799 1.4227 -0.2099 -10.9405
2 15d 3 1 ch3-7 ch3-10 4 62 ch4-556 ch4-560 3.2662 1.9326 1.7679 -1.934 3.8366
2 15d 1 117 ch1-290 ch1-297 4 97 ch4-596 ch4-598 3.3181 1.9115 -0.3325 -0.1728 3.8793
2 15d 4 35 ch4-469 ch4-475 5 89 ch5-356 ch5-363 2.641 1.4086 0.4091 0.6815 -3.2696
2 15d 3 23 ch3-171 ch3-183 6 3 ch6-25 ch6-26 2.5169 1.3794 0.1209 2.6377 -3.943
2 15d 4 79 ch4-596 ch4-598 6 132 ch6-615 ch6-617 3.2659 2.8512 -1.5125 -1.146 4.521
2 15d 3 23 ch3-171 ch3-183 7 8 ch7-23 ch7-25 3.0178 1.5174 -1.5646 3.1367 -4.459
2 15d 1 1 ch1-13 ch1-43 8 2 ch8-10 ch8-11 3.1271 1.5583 0.0639 0.042 3.5058
2 15d 3 44 ch3-315 ch3-341 8 123 ch8-640 ch8-644 4.0312 2.9516 -3.7635 5.5518 -5.5205
2 15d 2 87 ch2-301 ch2-313 9 61 ch9-298 ch9-306 2.6537 1.3775 5.363 0.5894 6.4891
2 15d 5 50 ch5-169 ch5-187 9 62 ch9-306 ch9-308 2.5355 1.3666 -6.8271 2.2675 -7.3989
2 15d 3 24 ch3-191 ch3-195 9 80 ch9-406 ch9-407 3.5678 5.5949 -11.0377 5.6481 -6.6336
2 15d 3 50 ch3-428 ch3-431 10 6 ch10-132 ch10-135 2.5985 1.859 -4.8706 5.944 -5.3614
2 15d 10 16 ch10-361 ch10-375 10 25 ch10-417 ch10-425 3.2299 2.1018 4.075 -3.7495 -6.864
2 15d 6 133 ch6-615 ch6-617 10 80 ch10-725 ch10-734 3.6547 2.7463 -1.5399 1.8084 -4.0638
2 15d 8 2 ch8-10 ch8-11 11 59 ch11-194 ch11-319 2.9629 1.5471 1.5843 0.9499 3.7992
2 15d 6 65 ch6-289 ch6-533 11 62 ch11-411 ch11-427 3.309 1.86 -2.9826 -0.1096 -3.9808
2 15d 7 36 ch7-243 ch7-247 11 87 ch11-459 ch11-467 3.0592 2.1895 -0.3598 -1.324 -4.0831
2 15d 12 25 ch12-43 ch12-46 12 27 ch12-43 ch12-46 3.5769 8.1352 -6.8067 8.0638 -4.4508
2 15d 4 3 ch4-66 ch4-72 12 31 ch12-43 ch12-46 2.7726 2.8824 0.0306 -0.4339 -4.8661
2 15d 3 105 ch3-843 ch3-864 12 72 ch12-232 ch12-235 2.9506 1.6021 0.5047 0.7086 -3.5864
[1] 云昌杰. 我国农村储粮问题研究. 粮食储藏, 1996, 69(6): 24-27.
Yun C J. Research on rural grain storage in China. Grain Storage, 1996, 69(6): 24-27.
[2] Xu H W, Zhu Y, Ling L, Zhang J. Antisense suppression of lox3 gene expression in rice endosperm enhances seed longevity. Plant Biotech J, 2013, 13: 526-539.
doi: 10.1111/pbi.12277
[3] Yuan Z, Fan K, Xia L, Ding X, Tian L, Sun W. Genetic dissection of seed storability and validation of candidate gene associated with antioxidant capability in rice (Oryza sativa L.). Int J Mol Sci, 2020, 20: 4442.
doi: 10.3390/ijms20184442
[4] 黄上志, 傅家瑞. 贮藏温度和相对湿度对杂交水稻种子耐藏性的影响. 植物生理学通讯, 1986, 11(6): 38-41.
Huang S Z, Fu J R. Effects of storage temperature and relative humidity on storage tolerance of hybrid rice seeds. Plant Phys Commun, 1986, 11(6): 38-41.
[5] 曾大力, 钱前, 国广泰史, 滕胜, 藤本宽. 稻谷储藏特性及其与籼粳特性的关系研究. 作物学报, 2002, 28: 551-554.
Zeng D L, Qian Q, Kunihiro Y, Teng S, Fujimoto H. Study on storage characteristics of rice and its relationship with indica and japonica characteristics. Acta Agron Sin, 2002, 28: 551-554.
[6] Jeevan K S P, Rajendra P S, Banerjee R, Thammineni C. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot, 2015, 116: 663-668.
doi: 10.1093/aob/mcv098
[7] Yasumatsu K, Moritaka S. Fatty acid compositions of rice lipid and their changes during storage. Agric Biol Chem, 1964, 28: 257-264.
doi: 10.1080/00021369.1964.10858241
[8] Aibara S, Ismail I A, Honami Y, Hiroyuki O, Futoshi S, Yuhei M. Changes in rice bran lipids and free amino acids during storage. Agric Biol Chem, 2014, 50: 665-673.
[9] Ramarathnam N, Osawa T, Namiki M, Tashiro T. Studies on the relationship between antioxidative activity of rice hull and germination ability of rice seeds. J Sci Food Agric, 2010, 37: 719-726.
doi: 10.1002/jsfa.2740370803
[10] Sattler S E, Gilliland L U, Magallanes L M, Pollard M, DellaPenna D. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16: 1419-1432.
pmid: 15155886
[11] Ren R J, Wang P, Wang L N, Su J P, & Chen X W. Os4bglu14, a monolignol β-glucosidase, negatively affects seed longevity by influencing primary metabolism in rice. Plant Mol Biol, 2020, 104: 513-527.
doi: 10.1007/s11103-020-01056-1
[12] 张瑛, 吴跃进, 吴敬德, 童继平, 郑乐娅. 脂肪氧化酶与稻谷贮藏的陈化变质. 安徽农业科学, 2001, 29(5): 565-566.
Zhang Y, Wu Y J, Wu J D, Tong J P, Zheng L Y. Lipoxygenase and aging deterioration of rice storage. Anhui Agric Sci, 2001, 29(5): 565-566.
[13] Shoji I, Yuji M, Yuhei M. The isolation of multiple forms and product specificity of rice lipoxygenase. Agric Biol Chem, 2014, 47: 637-641.
[14] Suzuki Y. Screening and mode of inheritance of a rice (Oryza sativa) variety lacking lipoxygenase-3. Gamma Field Symp, 1995, 33: 51-62.
[15] Lei M, Zhu F, Li Z, Zhang J, Li X, Dong J. Talen-based mutagenesis of lipoxygenase lox3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS One, 2015, 10: e0143877.
[16] 刘霞, 杜雅荣, 李喜宏, 马文, 王威, 刘香军, 高玉敏, 李丽秀. 水稻贮藏特性与籼粳基因型的关系. 中国粮油学报, 2015, 30(11): 1-5.
Liu X, Du Y R, Li X H, Ma W, Wang W, Liu X J, Gao Y M, Li L X. Relationship between storage characteristics of rice and indica-japonica genotypes. Chin J Grain Oil, 2015, 30(11): 1-5.
[17] Hang N T, Lin Q Y, Liu L L, Liu X, Liu S J, Wang W Y, Li L F, He N Q, Liu Z, Jiang L, Wan J M. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Euphytica, 2015, 203: 673-681.
doi: 10.1007/s10681-014-1304-0
[18] Li C S, Shao G S, Wang L, Wang Z F, Mao Y J, Wang X Q, Zhang X H, Liu S T, Zhang H S. QTL Identification and fine mapping for seed storability in rice (Oryza sativa L.). Euphytica, 2017, 213: 127.
doi: 10.1007/s10681-017-1913-5
[19] Li L F, Lin Q Y, Liu S J, Liu X, Wang W Y, Hang N T, Liu F, Zhao Z G, Jiang L, Wan J M. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Plant Breed, 2012, 131: 739-743.
doi: 10.1111/j.1439-0523.2012.02007.x
[20] Lin Q Y, Wang W Y, Ren Y K, Jiang Y M, Sun A L, Qian Y, Zhang Y F, He N Q, Hang N T, Liu Z, Li L F, Liu L L, Jiang L, Wan J M. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Breed Sci, 2015, 65: 411-419.
doi: 10.1270/jsbbs.65.411
[21] Miura K, Lin Y, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet, 2002, 104: 981-986.
pmid: 12582603
[22] Sasaki K, Fukuta Y, Sato T. Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breed, 2005, 124: 361-366.
doi: 10.1111/j.1439-0523.2005.01109.x
[23] Xue Y, Zhang S Q, Yao Q H. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica, 2008, 164: 739-744.
doi: 10.1007/s10681-008-9696-3
[24] Zeng D L. QTL analysis of seed storability in rice. Plant Breed, 2006, 125: 57-60.
doi: 10.1111/j.1439-0523.2006.01169.x
[25] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析. 植物学报, 2019, 54: 464-473.
doi: 10.11983/CBB18188
Liu J, Yao X Y, Yu L Q, Li H, Zhou H Y, Wang J Y, Li M M. Three year dynamic identification and QTL analysis of rice storage tolerance. Acta Bot Sin, 2019, 54: 464-473.
[26] 沈圣泉, 庄杰云, 王淑珍, 杨国花, 夏英武. 水稻种子耐贮藏性QTL主效应和上位性效应分析. 分子植物育种, 2005, 3: 323-328.
Shen S Q, Zhuang J Y, Wang S Z, Yang G H, Xia Y W. Analysis of QTL main effect and epistasis effect of rice seed storage tolerance. Mol Plant Breed, 2005, 3: 323-328.
[27] Jiang W, Lee J, Jin Y M. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Mol Cells, 2011, 31: 385-392.
doi: 10.1007/s10059-011-0049-z
[28] Lee J S, Velasco P M, Pacleb M, Valdez R, Kretzschmar T, McNally K L, Ismail A M, Cruz P C S, Sackville H N R, Hay F R. Variation in seed longevity among diverse indica rice varieties. Ann Bot, 2019, 124: 447-460.
doi: 10.1093/aob/mcz093
[29] Sasaki K, Takeuchi Y, Miura K. Fine mapping of a quantitative trait locus, qLG-9, controlling seed longevity of rice (Oryza sativa L.). Theor Appl Genet, 2015, 128: 769-778.
doi: 10.1007/s00122-015-2471-7 pmid: 25687128
[30] Lin Q Y, Jiang Y M, Sun A L, Cao P H, Li L F, Liu X, Tian Y L, He J, Liu S J, Chen L M, Jiang L. Fine mapping of qSS-9, a major and stable quantitative trait locus, for seed storability in rice (Oryza sativa L.). Plant Breed, 2015, 134: 293-299.
doi: 10.1111/pbr.12264
[31] Wang W, Meyer E, McKay J K, Matz M V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Meth, 2012, 9: 808-810.
[32] Gu S, Fang L, Xu X. Using SOAPaligner for short reads alignment. Curr Prot Bioinfor, 2013, 44: 1-17.
[33] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[34] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811
[35] Li H H, Ribaut J-M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5
[36] Lu B, Cai X, Xin J. Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci, 2009, 19: 1241-1252.
doi: 10.1016/j.pnsc.2009.01.011
[37] 张安鹏, 钱前, 高振宇. 水稻种子活力的研究进展. 中国水稻科学, 2018, 32: 296-303.
doi: 10.16819/j.1001-7216.2018.7140
Zhang A P, Qian Q, Gao Z Y. Research progress of rice seed vigor. China Rice Sci, 2018, 32: 296-303.
[38] 杨振玉, 李志彬, 东丽, 朱崴, 蔡卓, 曲丽君, 华泽田. 中国杂交粳稻发展与展望. 科学通报, 2016, 61: 3770-3777.
Yang Z Y, Li Z B, Dong L, Zhu W, Cai Z, Qu L J, Hua Z T. Development and prospect of japonica hybrid rice in China. Sci Bull, 2016, 61: 3770-3777.
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[3] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[4] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[5] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[6] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[7] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[8] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[9] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[10] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[11] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[12] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!