欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 365-376.doi: 10.3724/SP.J.1006.2023.12076

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应

李兆伟1,2(), 莫祖意1,2, 孙聪颖1,2, 师宇1,2, 尚平2,3, 林伟伟1,2, 范凯2,3, 林文雄1,2,*()   

  1. 1福建农林大学生命科学学院, 福建福州 350002
    2福建农林大学 / 福建省农业生态过程与安全监控重点实验室, 福建福州 350002
    3福建农林大学农学院, 福建福州 350002
  • 收稿日期:2021-11-05 接受日期:2022-06-07 出版日期:2022-07-08 网络出版日期:2022-11-21
  • 通讯作者: 林文雄
  • 作者简介:E-mail: lizw197@163.com
  • 基金资助:
    福建省自然科学基金项目(2021J01098);福建省自然科学基金项目(2022J01142)

Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress

LI Zhao-Wei1,2(), MO Zu-Yi1,2, SUN Cong-Ying1,2, SHI Yu1,2, SHANG Ping2,3, LIN Wei-Wei1,2, FAN Kai2,3, LIN Wen-Xiong1,2,*()   

  1. 1College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-11-05 Accepted:2022-06-07 Published:2022-07-08 Published online:2022-11-21
  • Contact: LIN Wen-Xiong
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J01098);Natural Science Foundation of Fujian Province(2022J01142)

摘要:

为探究转录因子OsNAC2d的生物学功能及其对水稻耐旱性的影响, 本研究利用CRISPR/Cas9编辑技术对粳稻中花11中的OsNAC2d基因进行突变, 并考察osnac2d突变体在田间种植下的农艺性状, 以及突变体幼苗在干旱胁迫下的生长情况和OsNAC2d基因表达水平。结果表明, OsNAC2d基因主要在水稻成熟籽粒、叶片和花药中表达, 在根系和茎中的表达量较低, 并且受干旱胁迫诱导, 在10株阳性OsNAC2d基因突变株系的T2代植株中, 筛选出6种纯合osnac2d突变体, 田间试验调查表明, osnac2d突变体与野生型中花11相比, 株高、有效穗、穗长、穗粒数、结实率、千粒重和单株产量等农艺性状无显著差异。在干旱胁迫时, osnac2d突变体幼苗的根系与植株生长、根系和地上部生物量的积累均受到抑制, 且OsNAC2dosnac2d突变体中的表达量维持在较低水平, 而野生型水稻的OsNAC2d表达则受干旱胁迫诱导而增强, 植株生长与生物量积累未受到显著抑制, 表明转录因子OsNAC2d正调控水稻响应干旱胁迫。创建的osnac2d突变体材料为进一步揭示OsNAC2d的生物学功能及其响应干旱胁迫的精细调控机制提供了优质种质资源。

关键词: 水稻, 干旱胁迫, 基因编辑, OsNAC2d基因

Abstract:

The main objective of this study is to explore the biological function of transcription factor OsNAC2d and its effect on drought resistance in rice. The sequence of OsNAC2d was firstly edited in japonica variety Zhonghua 11 through the CRISPR/Cas9 technology. The agronomic traits of osnac2d mutants were investigated in normal field cultivation, and the growth status and relative expression level of OsNAC2d genes were performed in the young mutant seedlings under the drought condition. There was the higher expression level of OsNAC2d in grain, leaf, and anther than those in root and stem, and the relative expression of OsNAC2d was enhanced by drought stress. Six homozygous T2 osnac2d lines were identified in two editing target sites of OsNAC2d genomic sequence through the nucleotide sequencing technology. There was no significant difference between osnac2d mutants and wild type in the agronomic traits including plant height, effective panicle number per plant, panicle length, grain number per panicle, seed setting rate, 1000-grain weight, and grain yield per plant. Under the drought condition, the growth of roots and seedling of osnac2d mutants were depressed, and the biomass of roots and above-ground were also decreased. Meanwhile, the relative expression of OsNAC2d in the osnac2d mutant retained as extremely low level as those in the normal cultivating condition. However, the relative expression of OsNAC2d in wild type was enhanced by drought stress, and the growth and biomass accumulation of wild type were not evidently hindered by drought stress. These results indicated that OsNAC2d positively regulated the drought response in rice. The osnac2d mutants in this present study provided a precious genetic resource for deeply revealing the biological function of OsNAC2d and its fine regulating mechanism in response to drought stress.

Key words: rice, drought stress, gene editing, OsNAC2d gene

图2

OsNAC2d的gRNA靶点和pYLCRISPR/Cas9-OsNAC2d-T12表达载体重组示意图 A: OsNAC2d的2个gRNA靶点位置和碱基序列; B: 2个靶点gRNA表达盒与pYLCRISPR/Cas9-MT重组示意图。"

表1

本研究采用的核苷酸序列及相应引物"

引物名称Primer name 引物序列Primer sequence (5'-3') 用途Usage
OsNAC2d-T1-fwd gccgTCCATGGCGGCACGCTCAG 靶点1序列
Sequence of target site 1
OsNAC2d-T1-rev aaacCTGAGCGTGCCGCCATGGA
OsNAC2d-T2-fwd gttgGTGGCACTAGAGCTGCAGT 靶点2序列
Sequence of target site 2
OsNAC2d-T2-rev aaacACTGCAGCTCTAGTGCCAC
OsNAC2d-T1-F TCGTCTCCCGCTACCTTCT 靶点1检测
Sequencing for target 1
OsNAC2d-T1-R GCGTACTCGTGCATAACCC
OsNAC2d-T2-F AGAACTCCTACGACCTAATGGC 靶点2检测
Sequencing for target 2
OsNAC2d-T2-R ATGTCCGACGCACGCAGAG
Hyp-F ACGGTGTCGTCCATCACAGTTTGCC 阳性转基因植株鉴定
Identification of the positive transgenic plant
Hyp-R TTCCGGAAGTGCTTGACATTGGGGA
OsNAC2d-RT-F GATCAGATCGTTCCCCCAGC OsNAC2d表达量分析
Relative expression analysis of OsNAC2d
OsNAC2d-RT-R TGCGACACAGACAGGTCATC

图1

水稻OsNAC2d的表达量分析 A: OsNAC2d在野生型ZH11水稻的根、茎、叶、花药和籽粒中的表达水平; B: 叶片和根系中OsNAC2d在15%的PEG-6000胁迫下的动态表达分析, 取样时间分别为处理后0、0.5、3、6、12和24 h; 不同字母表示在P < 0.05水平的显著性差异。"

图3

pYLCRISPR/Cas9-OsNAC2d-T12重组表达载体的2个靶点测序检测"

图4

阳性转基因株系鉴定 -: 阴性对照, 为等体积的水代替模板; +: 阳性对照, 为等体积阳性质粒作模板; 1~11: 转基因株系; M: 2 kb DNA ladder。"

图5

osnac2d突变体与野生型植株中的OsNAC2d基因序列比对分析 蓝色字母表示靶点序列, 黄色高亮为PAM序列, 删除线代表缺失碱基, 红色小写字母为插入碱基, -表示缺失, +表示插入, WT代表野生型(中花11)。"

图6

osnac2d突变体与野生型水稻在含15%的PEG-6000营养液胁迫下的表型 A和D为野生型水稻中花11, B和E为osnac2d-6突变体, C和F为osnac2d-4-2突变体, 对照组为完全营养液培养, PEG-6000处理时长为14 d。"

图7

osnac2d突变体与野生型ZH11在含15%的PEG-6000营养液中的长势情况 A为根系长度, B为地上部长度, C为植株总长度, 对照组为完全营养液培养, PEG-6000处理时长为14 d, 不同字母表示在P < 0.05水平的显著性差异。"

图8

osnac2d突变体与野生型ZH11在含15%的PEG-6000营养液中的生物量 A为根系生物量, B为地上部生物量, C为植株总生物量, 对照组为完全营养液培养, PEG-6000处理时长为14 d, 不同字母表示在P < 0.05水平的显著性差异。"

图9

osnac2d-6、osnac2d-4-2突变体和野生型ZH11中OsNAC2d基因在15%的PEG-6000胁迫下的表达水平 对照组为完全营养液培养, 不同字母表示在P < 0.05水平的显著性差异。"

表2

不同类型osnac2d突变体植株及其野生型水稻(WT)的农艺性状"

株系
Line
株高
Plant height (cm)
有效穗数
Effective panicle number per plant
穗长
Length of main panicle (cm)
穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
单株产量
Grain yield per plant (g)
osnac2d-1 68.0±1.0 ab 10.0±2.0 a 23.33±2.75 a 107.25±16.82 ab 77.99±12.71 ab 22.70±1.04 ab 11.14±1.55 a
osnac2d-2-1 64.7±0.6 b 9.0±1.0 a 22.52±1.57 a 115.67±17.59 ab 72.32±13.44 ab 24.30±1.00 a 12.58±2.27 a
osnac2d-2-2 67.3±1.2 ab 10.7±1.5 a 23.43±0.98 a 120.00±19.03 ab 59.83±14.19 b 21.38±0.71 b 11.51±0.90 a
osnac2d-4-1 67.0±2.0 ab 11.3±2.1 a 22.53±0.48 a 117.00±7.81 ab 76.96±2.55 ab 21.84±0.41 ab 14.63±1.04 a
osnac2d-4-2 66.0±2.0 ab 9.3±2.1 a 22.33±0.99 a 88.02±11.79 b 80.67±0.94 ab 22.20±0.26 ab 9.26±2.32 a
osnac2d-6 67.0±1.0 ab 10.7±1.5 a 23.94±1.09 a 112.33±9.18 ab 72.46±8.94 ab 23.20±0.20 ab 12.77±1.84 a
WT(ZH11) 69.2±0.5 a 8.7±2.1 a 21.98±0.70 a 123.11±9.47 a 83.76±6.85 a 22.33±1.55 ab 9.96±3.06 a
[1] 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展. 生物技术通报, 2020, 36(12): 155-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537
Zhang H M, Li Y, Liu H F, Kong L G, Ding X H. Research progress on regulatory genes of important agronomic traits and breeding utilization in rice. Biotech Bull, 2020, 36(12): 155-169. (in Chinese with English abstract)
[2] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301-1321. (in Chinese with English abstract)
[3] Bernier J, Atlin G, Serraj R, Kumar A, Spaner D. Breeding upland rice for drought resistance. J Sci Food Agric, 2008, 88: 927-939.
doi: 10.1002/jsfa.3153
[4] 王英, 张浩, 马军韬, 张丽艳, 邓凌伟, 王永力, 高晶, 张国民. 水稻抗旱研究进展与展望. 热带作物学报, 2018, 39: 1038-1043.
Wang Y, Zhang H, Ma J T, Zhang L Y, Deng L W, Wang Y L, Gao J, Zhang G M. Advances in drought tolerance of rice. Chin J Trop Crops, 2018, 39: 1038-1043. (in Chinese with English abstract)
[5] Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2017, 104: 16402-16409.
doi: 10.1073/pnas.0708013104
[6] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49: 1185-1212.
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci China-Life Sci, 2019, 49: 1185-1212. (in Chinese with English abstract)
[7] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
pmid: 9212461
[8] Souer E, Houwelingen A V, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159-170.
pmid: 8612269
[9] 柳展基, 邵凤霞, 唐桂英. 植物NAC转录因子的结构功能及其表达调控研究进展. 西北植物学报, 2007, 27: 1915-1920.
Liu Z J, Shao F X, Tang G Y. The research progress of structure, function and regulation of plant NAC transcription factors. Acta Bot Boreali-Occident Sin, 2007, 27: 1915-1920. (in Chinese with English abstract)
[10] 李鹏, 黄耿青, 李学宝. 植物NAC转录因子. 植物生理学通讯, 2010, 46: 294-300.
Li P, Huang G Q, Li X B. Plant NAC transcription factors. Plant Physiol Commun, 2010, 46: 294-300. (in Chinese)
[11] Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465: 30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702
[12] Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcrition factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
doi: 10.1073/pnas.0604882103
[13] Redillas M C, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J, 2012, 10: 792-805.
doi: 10.1111/j.1467-7652.2012.00697.x pmid: 22551450
[14] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284: 173-183.
doi: 10.1007/s00438-010-0557-0
[15] Jeong J S, Kim Y S, Redillas M C Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plant leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J, 2013, 11: 101-114.
doi: 10.1111/pbi.12011 pmid: 23094910
[16] Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong LZ. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot, 2015, 66: 6803-6817.
doi: 10.1093/jxb/erv386
[17] Li Z, Pan X, Guo X, Fan K, Lin W. Physiological and transcriptome analyses of early leaf senescence for ospls1 mutant rice (Oryza sativa L.) during the grain-filling stage. Int J Mol Sci, 2019, 20: 1098.
doi: 10.3390/ijms20051098
[18] 李兆伟, 零东兰, 孙聪颖, 曾慧玲, 刘凯基, 蓝颖珊, 范凯, 林文雄. 利用CRISPR/Cas9技术定向编辑水稻OsIAA11. 中国农业科学, 2021, 54: 2699-2709.
Li Z W, Ling D L, Sun C Y, Zeng H L, Liu K J, Lan Y S, Fan K, Lin W X. CRISPR/Cas9 targeted editing of OsIAA11 in rice. Sci Agric Sin, 2021, 54: 2699-2709. (in Chinese with English abstract)
[19] Ma X L, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[20] 沈少炎, 吴玉香, 郑玉善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3): 169-176.
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular. Curr Biotech, 2017, 7(3): 169-176. (in Chinese with English abstract)
[21] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015, 32: 76-84.
doi: S0958-1669(14)00194-3 pmid: 25437637
[22] Bhatta B P, Malla S. Improving horticulture crops via CRISPR/ Cas9: current successes and prospects. Plants (Basel), 2020, 9: 1360.
[23] Yimam Y T, Zhou J, Akher S A, Zheng X, Qi Y, Zhang Y. Improving a quantitative trait in rice by multigene editing with CRISPR-Cas9. Methods Mol Biol, 2021, 2238: 205-219.
doi: 10.1007/978-1-0716-1068-8_13 pmid: 33471333
[24] Rao MJ, Wang L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 2021, 254: 68.
doi: 10.1007/s00425-021-03716-y pmid: 34498163
[25] Ren C, Liu Y, Guo Y, Duan W, Fan P, Li S, Liang Z. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res, 2021, 8: 52.
doi: 10.1038/s41438-021-00489-z
[26] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018, 44: 844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2018, 44: 844-851. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00844
[27] 季新, 李飞, 晏云, 孙红正, 张静, 李俊周, 彭廷, 杜彦修, 赵全志. 基于CRISPR/Cas9系统的水稻光敏色素互作因子OsPIL15基因编辑. 中国农业科学, 2017, 50: 2861-2871.
Ji X, Li F, Yan Y, Sun H Z, Zhang J, Li J Z, Peng T, Du Y X, Zhao Q Z. CRISPR/Cas9 system-based editing of phytochrome- interacting factor OsPIL15. Sci Agric Sin, 2017, 50: 2861-2871. (in Chinese with English abstract)
[28] 黄前量, 徐庆国, 殷绪明. 水稻NAC转录因子基因OsDSR42的克隆与功能初步分析. 分子植物育种, 2022, 20: 5229-5235.
Huang Q L, Xu Q G, Yin X M. Cloning and functional analysis of OsDSR42, a NAC transcription factor gene from rice. Mol Plant Breed, 2022, 20: 5229-5235.
[29] 王春雨, 张茜. 植物NAC转录因子功能研究进展. 生物技术通报, 2018, 34(11): 8-14.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0443
Wang C Y, Zhang Q. Research progress on plant NAC transcription factors. Biotech Bull, 2018, 34(11): 8-14. (in Chinese with English abstract)
[30] 张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55: 915-924.
Zhang H Z, Bai X Q, Zeng Y L. Biological functions of plant NAC transcription factors. Plant Physiol J, 2019, 55: 915-924. (in Chinese with English abstract)
[31] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498.
doi: 10.1105/tpc.104.022699
[32] Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant, 2016, 158: 45-64.
doi: 10.1111/ppl.12444 pmid: 26991441
[33] Nakashima K, Tran L P, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617-630.
pmid: 17587305
[34] Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4.
[35] 罗莉琼, 吕波, 陈旭, 李捷, 明凤. OsNAC2通过ABA依赖途径负调控水稻的多种非生物胁迫反应. 复旦学报(自然科学版), 2016, 55(1): 89-96.
Luo L Q, Lyu B, Chen X, Li J, Ming F. OsNAC2 negatively regulates various abiotic stress through ABA-dependent pathway in rice. J Fudan Univ (Nat Sci Edn), 2016, 55(1): 89-96. (in Chinese with English abstract)
[36] 饶玉春, 戴志俊, 朱怡彤, 姜嘉骥. 水稻抗干旱胁迫的研究进展. 浙江师范大学学报(自然科学版), 2020, 43(4): 417-429.
Rao Y C, Dai Z J, Zhu Y T, Jiang J J. Advances in research of drought resistance in rice. J Zhejiang Norm Univ (Nat Sci Edn), 2020, 43(4): 417-429. (in Chinese with English abstract)
[37] 梅德勇, 王士梅, 朱启升, 陈秀晨, 龚存力, 韩云芳, 于智坤. 水稻抗旱性遗传生理机制及育种研究进展. 安徽农学通报, 2016, 22(22): 10-14.
Mei D Y, Wang S M, Zhu Q S, Chen X C, Gong C L, Han Y F, Yu Z K. Progress on the genetic and physiological mechanism of rice drought resistance and breeding strategies. Anhui Agric Sci Bull, 2016, 22(22): 10-14. (in Chinese with English abstract)
[38] Zhang Z, Dong J, Ji C, Wu Y, Messing J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci USA, 2019, 116: 11223-11228.
doi: 10.1073/pnas.1904995116
[39] Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J Exp Bot, 2021, 72: 2947-2964.
doi: 10.1093/jxb/erab027 pmid: 33476364
[1] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[2] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[3] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[4] 李秋平, 张春龙, 杨 宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[5] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[6] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[7] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[8] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[9] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[10] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[11] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[12] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[13] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[14] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[15] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!