欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 869-876.doi: 10.3724/SP.J.1006.2023.24030

• 研究简报 • 上一篇    

花生籽仁品质性状高通量表型分析模型的构建

纪红昌1(), 胡畅丽1, 邱晓臣1, 吴兰荣2, 李晶晶1, 李鑫1, 李晓婷1, 刘雨函1, 唐艳艳1, 张晓军1, 王晶珊1, 乔利仙1,*()   

  1. 1青岛农业大学农学院 / 山东省花生产业协同创新中心 / 山东省旱作农业技术重点实验室, 山东青岛 266109
    2青岛市农业技术推广中心, 山东青岛 266100
  • 收稿日期:2022-01-24 接受日期:2022-07-22 出版日期:2023-03-12 网络出版日期:2022-08-01
  • 通讯作者: 乔利仙
  • 作者简介:E-mail: 17806285316@163.com
  • 基金资助:
    青岛市科技惠民示范引导专项重点项目(20-3-4-25-nsh);山东省农业良种工程项目(2020LZGC001);山东省自然科学基金项目(ZR2020MC102)

High-throughput phenotyping models for quality traits in peanut kernels

JI Hong-Chang1(), HU Chang-Li1, QIU Xiao-Chen1, WU Lan-Rong2, LI Jing-Jing1, LI Xin1, LI Xiao-Ting1, LIU Yu-Han1, TANG Yan-Yan1, ZHANG Xiao-Jun1, WANG Jing-Shan1, QIAO Li-Xian1,*()   

  1. 1College of Agriculture, Qingdao Agricultural University / Shandong Peanut Industry Collaborative Innovation Center / Shandong Key Laboratory of Dryland Agricultural Technology, Qingdao 266109, Shandong, China
    2Qingdao Agricultural Technology Extension Center, Qingdao 266100, Shandong, China
  • Received:2022-01-24 Accepted:2022-07-22 Published:2023-03-12 Published online:2022-08-01
  • Contact: QIAO Li-Xian
  • Supported by:
    Special Key Project of Qingdao Science and Technology Benefiting the People Demonstration and Guidance(20-3-4-25-nsh);Shandong Agricultural Improved Seed Project(2020LZGC001);Natural Science Foundation of Shandong(ZR2020MC102)

摘要:

花生是重要的油料作物之一, 其籽仁品质直接影响加工特性, 是花生品质评价的重要指标。建立花生籽仁品质高通量分析模型, 快速高效地对花生籽仁品质进行评价, 可显著提高花生育种效率。本研究选用宇花14与LOP215杂交构建的140个RIL家系和35份其他品系为建模材料, 使用Thermo公司生产的Antaris II型傅立叶变换近红外光谱分析仪对175份样品籽仁进行光谱采集。采用索氏提取法测定籽仁含油量, 杜马斯定氮法测定蛋白含量, 蒽酮比色法测定糖含量, 气相色谱法测定脂肪酸含量。利用偏最小二乘法(partial least squares, PLS)构建花生籽仁含油量、蛋白含量、糖含量以及部分脂肪酸含量的多粒近红外定标模型。选用未参与建模的30份花生样品对该模型进行验证, 模型决定系数R2值均大于0.9000, 表明该模型可用于花生籽仁品质性状的分析预测。本研究为花生籽仁品质性状高通量表型分析提供了检测模型。

关键词: 花生, 籽仁, 含油量, 近红外模型, RIL群体

Abstract:

Peanut is one of the important oil crops. Its kernel quality directly affects its processing characteristics and is an important index for peanut quality evaluation. Establishing a high-throughput phenotyping model for peanut kernel quality and evaluating peanut kernel quality quickly and efficiently might significantly improve the efficiency of peanut breeding. In this study, the spectra of 175 peanut kernel samples (140 RIL populations derived from Yuhua 14 × LOP 215 and 35 other breeding lines) were collected by Antaris II Fourier Transform Near Infrared Spectroscopy Analyzer (Thermo company), and the oil content, protein content, sugar content, and fatty acid content of seed kernel were determined by Soxhlet extraction method, Dumas nitrogen method, anthrone colorimetry, and gas chromatography, respectively. Partial least squares (PLS) was used to construct the near-infrared calibration models of oil content, protein content, sugar content and some fatty acid content of peanut kernel. 30 other peanut materials which were not involved in the modelling were selected to verify the model externally. The determination coefficients (R2) of the models were greater than 0.90, indicating that the models could be applied to the high-throughput prediction of peanut kernel quality traits. This study provides a detection platform for high-throughput phenotypic analysis of peanut kernel quality traits.

Key words: peanut, kernel, oil content, near infrared model, RIL population

表1

可溶性糖标准曲线绘制所需标准品溶液"

试剂Reagent 标准品配比Standard sample ratio
100 µg mL-1标样体积 Volume of standard sample (mL) 0 0.2 0.4 0.6 0.8 1.0
蒸馏水 H2O (mL) 2.0 1.8 1.6 1.4 1.2 1.0
标准样品总量 Standard sample quality (µg) 0 20.0 40.0 60.0 80.0 100.0

图1

可溶性糖含量标准曲线"

图2

杜马斯定氮仪的样品燃烧曲线"

图3

175份花生样品脂肪含量(A)、蛋白质含量(B)和可溶性糖含量(C)化学法测定值"

图4

175份花生样品油酸含量(A)、亚油酸含量(B)和棕榈酸含量(C)化学法测定值"

图5

花生脂肪、蛋白质、可溶性糖、油酸、亚油酸和棕榈酸含量(A~F)的决定系数"

图6

花生脂肪、蛋白质、可溶性糖、油酸、亚油酸和棕榈酸含量(A~F)预测值与化学测定值的相关性"

[1] 廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望. 农学学报, 2018, 8(1): 107-112.
Liao B S, Yin Y, Ma N. Review and prospect of China’s oil crop industry. J Agric, 2018, 8(1): 107-112. (in Chinese with English abstract)
[2] 金华丽, 李琳琳. 近红外光谱技术测定花生蛋白质含量研究. 河南工业大学学报(自然科学版), 2014, 35(1): 26-29.
Jin H L, Li L L. Determination of peanut protein content by near infrared spectroscopy. J Henan Univ Technol (Nat Sci Edn), 2014, 35(1): 26-29. (in Chinese with English abstract)
[3] 宋丽华, 刘立峰, 陈焕英, 穆国俊, 卢萍萍. 花生籽仁蛋白质含量近红外光谱模型的建立. 中国农学通报, 2011, 27(15): 85-89.
Song L H, Liu L F, Chen H Y, Mu G J, Lu P P. Establishment of near infrared spectral model of protein content in peanut kernel. Chin Agric Sci Bull, 2011, 27(15): 85-89. (in Chinese with English abstract)
[4] 马寅斐, 何东平, 王文亮, 刘丽娜, 徐同成, 陶海腾, 杜方岭. 我国花生产业的现状分析. 农产品加工学刊, 2011, (7): 122-124.
Ma Y F, He D P, Wang W L, Liu L N, Xu T C, Tao H T, Du F L. Analysis on the current situation of China’s peanut industry. Acad Period Farm Prod Proc, 2011, (7): 122-124. (in Chinese with English abstract)
[5] Bishi S K, Lokesh K, Mahatma M K. Misra quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem, 2015, 167: 107-114.
doi: 10.1016/j.foodchem.2014.06.076 pmid: 25148966
[6] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西. 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017, 33(22): 13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X. Study on the current situation and development trend of peanut production technology in China. Chin Agric Sci Bull, 2017, 33(22): 13-18 (in Chinese with English abstract)
[7] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018, 19: 875-886.
Fang Y J, Sun Z Q, Miao L J, Qi F Y, Huang B Y, Zheng Z, Dong W Z, Tang F S, Zhang X Y. Characteristics of appearance and nutritional quality of peanut kernel and analysis of breeding and utilization of edible peanut. J Plant Genet Resour, 2018, 19: 875-886. (in Chinese with English abstract)
[8] 齐伟杰. 现代近红外光谱分析在食品检测中的应用. 中国食品, 2021, (16): 124-125.
Qi W J. Application of modern near infrared spectroscopy in food detection. Chin Food, 2021, (16): 124-125. (in Chinese with English abstract)
[9] Islelb T G, Pattee H E, Giesbrecht F G. Oil, sugar, and starch characteristics in peanut breeding lines selected for low and high oil content and their combining ability. J Agric Food Chem, 2004, 52: 3165-3168.
doi: 10.1021/jf035465y
[10] Jitndra B M, Ram S M, Dilip M B. Near-infrared transmittance spectroscopy: a potential tool for non-destructive determination of oil content in groundnuts. J Sci Food Agric, 2000, 80: 237-240.
doi: 10.1002/(SICI)1097-0010(20000115)80:2<237::AID-JSFA523>3.0.CO;2-9
[11] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47: 332-341.
doi: 10.3724/SP.J.1006.2021.04106
Lei Y, Wang Z H, Huai D X, Gao H Y, Yan L Y, Li J G, Li W T, Chen Y N, Kang Y P, Liu H L, Wang X, Xue X M, Jiang H F, Liao B S. Construction of near infrared model of sucrose content in peanut kernel and its application in cultivation of high sugar varieties. Acta Agron Sin, 2021, 47: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04106
[12] 杨军军, 庞洪利, 韩宏伟, 王秀贞, 孙妍, 王志伟, 王传堂. 花生油油酸亚油酸含量近红外模型构建. 农业与技术, 2021, 41(15): 4-7.
Yang J J, Pang H L, Han H W, Wang X Z, Sun Y, Wang Z W, Wang C T. Construction of near infrared model of oleic acid and linoleic acid content in peanut oil. Agric Technol, 2021, 41(15): 4-7. (in Chinese with English abstract)
[13] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016, 38: 666-671. (in Chinese with English abstract)
[14] 李培武, 陈小媚, 张文. 油料种籽含油量的测定残余法. 中华人民共和国行业标准, NY/T1285-2007.
Li P W, Chen X M, Zhang W. Determination of oil content in oilseeds residual method. Industrial Standard of the People’s Republic of China, NY/T 1285-2007. (in Chinese with English abstract)
[15] 汪红, 魏亮亮, 李通, 王铁良, 许超, 刘冰杰, 郭洁. 杜马斯燃烧法快速测定粮油中粗蛋白质含量研究. 粮油食品科技, 2018, 26(2): 49-53.
Wang H, Wei L L, Li T, Wang T L, Xu C, Liu B J, Guo J. Rapid determination of crude protein content in grains and oils by Dumas combustion method. Cereals Oil Food Sci Technol, 2018, 26(2): 49-53. (in Chinese with English abstract)
[16] 李安妮, 刘敏敏, 庾翠梅, 徐妙颜. 用蒽酮法测定花生荚果和植株可溶性糖和淀粉. 中国油料, 1983, (3): 50-51.
Li A N, Liu M M, Yu C M, Xu M Y. Determination of soluble sugar and starch in peanut pods and plants by anthrone method. Chin Oil, 1983, (3): 50-51. (in Chinese with English abstract)
[17] 金诚诚, 杨振中, 曹莹, 于慧佳. 气相色谱归一化法测定高油酸花生中油酸、亚油酸含量. 农业科技与装备, 2021, (1): 52-55.
Jin C C, Yang Z Z, Cao Y, Yu H J. Determination of oleic acid and linoleic acid in high oleic peanut by gas chromatography normalization. Agric Sci Technol Equip, 2021, (1): 52-55. (in Chinese with English abstract)
[18] 张建成, 王传堂, 王秀贞, 唐月异, 张树伟, 李贵杰. 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建. 中国农学通报, 2011, 27(3): 90-93.
Zhang J C, Wang C T, Wang X Z, Tang Y Y, Zhang S W, Li G J. Construction of near infrared analysis model for oleic acid, linoleic acid and palmitic acid content of naturally air dried peanut seeds. Chin Agric Sci Bull, 2011, 27(3): 90-93. (in Chinese with English abstract)
[19] 杨传得, 唐月异, 王秀贞, 吴琪, 孙全喜, 王传堂, 关淑艳. 傅立叶近红外漫反射光谱技术在花生脂肪酸分析中的应用. 花生学报, 2015, 44(1): 11-17.
Yang C D, Tang Y Y, Wang X Z, Wu Q, Sun Q X, Wang C T, Guan S Y. Application of fourier near infrared diffuse reflectance spectroscopy in the analysis of peanut fatty acids. J Peanut Sci, 2015, 44(1): 11-17. (in Chinese with English abstract)
[20] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018, 50(6): 159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. Construction of near infrared quantitative analysis model of sucrose content in naturally air dried peanut seeds. Shandong Agric Sci, 2018, 50(6): 159-162. (in Chinese with English abstract)
[21] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of a method for the determination of soluble sugar content in peanut kernel based on HPLC-RID. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[22] 曲艺伟, 张鹤, 韩笑, 李雪莹, 王传堂, 王丕武, 姚丹, 张君. 花生脂肪酸近红外模型的建立. 分子植物育种, 2019, 17: 568-578.
Qu Y W, Zhang H, Han X, Li X Y, Wang C T, Wang P W, Yao D, Zhang J. Establishment of near infrared model of peanut fatty acids. Mol Plant Breed, 2019, 17: 568-578. (in Chinese with English abstract)
[23] 纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁含油量近红外模型的构建及其应用. 中国油料作物学报, 2022, 44: 1089-1097.
Ji H C, Qiu X C, Liu W H, Hu C L, Kong M, Hu X H, Huang J B, Yang X, Tang Y Y, Zhang X J, Wang J S, Qiao L X. Construction and application of near infrared model of oil content in peanut kernel. Chin J Oil Crop Sci, 2022, 44: 1089-1097.
[24] 昝光敏, 张玲, 张延瑞, 盛英华, 周凯, 王贤智. 大豆籽粒脂肪酸组分气相色谱检测方法的建立. 中国农学通报, 2021, 37(9): 118-124. (in Chinese with English abstract)
Jiu G M, Zhang L, Zhang Y R, Sheng Y H, Zhou K, Wang X Z. Establishment of a gas chromatographic method for the determination of fatty acid components in soybean seeds. Chin Agric Sci Bull, 2021, 37(9): 118-124. (in Chinese with English abstract)
[25] 李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45: 1891-1898.
doi: 10.3724/SP.J.1006.2019.94016
Li J G, Xue X M, Zhang Z H, Wang Z H, Yan L Y, Chen Y N, Wan L Y, Kang Y P, Huai D X, Jiang H F, Lei Y, Liao B S. Establishment and application of near infrared prediction model for main fatty acid content of single peanut. Acta Agron Sin, 2019, 45: 1891-1898. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.94016
[26] 金华丽, 崔彬彬. 花生种子含油量近红外测定模型建立. 粮食与油脂, 2014, 27(9): 49-51.
Jin H L, Cui B B. Establishment of near infrared measurement model of oil content in peanut seeds. Grain Oil, 2014, 27(9): 49-51. (in Chinese with English abstract)
[27] 禹山林, 朱雨杰, 闵平, 杨庆利, 曹玉良, 王传堂, 刘旭, 周学秋. 傅立叶近红外漫反射非破坏性测定花生种子主要脂肪酸含量. 花生学报, 2010, 39(1): 11-14.
Yu S L, Zhu Y J, Min P, Yang Q L, Cao Y L, Wang C T, Liu X, Zhou X Q. Nondestructive determination of main fatty acids in peanut seeds by fourier near infrared diffuse reflectance. J Peanut Sci, 2010, 39(1): 11-14. (in Chinese with English abstract)
[28] Pattee H E, Islelb T G, Giesbrecht F G. Relationships of sweet, bitter, and roaste peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757-776.
doi: 10.1021/jf9910741
[29] 陈海文, 徐思亮, 郭建斌, 陈伟刚, 罗怀勇, 刘念, 黄莉, 周小静, 吴贝, 姜成红, 任小平, 姜慧芳. 不同花生品种白藜芦醇含量鉴定评价. 中国油料作物学报, 2021, 43: 942-946.
Chen H W, Xu S L, Guo J B, Chen W G, Luo H Y, Liu N, Huang L, Zhou X J, Wu B, Jiang C H, Ren X P, Jiang H F. Evaluation of resveratrol content in different peanut varieties. Chin J Oil Crop Sci, 2021, 43: 942-946. (in Chinese with English abstract)
[1] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[2] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[3] 邹晓霞, 蔺益民, 赵亚飞, 刘燕, 刘娟, 王月福, 王维华. 施钙量对不同花生荚果发育时期光合碳在植株-土壤系统分配的影响[J]. 作物学报, 2023, 49(1): 239-248.
[4] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[5] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[6] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[7] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[10] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[11] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[12] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[13] 王艺璇, 贾浩, 逯杰, 石晓宇, 赵明宇, 高真真, 赵炯超, 褚庆全. 黄淮海农作区花生生产水足迹及耗水结构分析[J]. 作物学报, 2022, 48(12): 3203-3214.
[14] 刘星, 苏良辰, 李丽梅, 李玲. ChIP-seq分析花生中AhGLK1与AhHDA1调控的下游靶基因网络[J]. 作物学报, 2022, 48(11): 2765-2773.
[15] 胡美玲, 薛晓梦, 吴洁, 郅晨阳, 刘念, 陈小平, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 花生籽仁脂肪和蔗糖含量的胚、细胞质、母体遗传效应分析[J]. 作物学报, 2022, 48(11): 2724-2732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .